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Overview 
Geotechnical engineering characterizes soil behaviour using , su, Cc and so forth, with 
these parameters measured using insitu and/or laboratory tests.  Advanced (or 
‘theoretical’) soil mechanics seeks to understand these familiar parameters in terms of 
fundamental properties.  A feature of advanced soil mechanics is use of physical 
principles rather than correlations; an immediate benefit is being able to compute, for 
example, how changes in conditions (for example void ratio and/or stress level) affect 
the geotechnical parameters such as .  
 
Recent dam failures, with transitions from drained to undrained conditions in tens of 
seconds (or quicker), have challenged conventional geotechnical engineering which 
provides little in the way of explaining how such failures develop.   But, this mechanism 
is very simple in terms of physical principles.   It is these sudden dam failures, possibly 
more than anything else, that have created interest in what advanced soil mechanics 
offers practical engineers – and thus this course. 
  
Advanced soil mechanics applies the doctrine ‘if you cannot compute, you have nothing’.   
This phrase is more important than it looks, as it derives from a most fundamental 
question about knowledge (search the Church–Turing thesis on Wikipedia).   For the 
practical engineer it amounts to requiring that our theories ‘add up’; and the easiest way 
to find that out is to use a spreadsheet – which is the approach followed in this course.  
Properties are derived from data, but then these properties are used to formally compute 
the soil’s behaviour in laboratory tests – so checking that what you believe to be your 
‘understanding’ is actually consistent with the raw measurements you made.   
 
Traditional views and teaching of advanced soil mechanics divide the subject into pore 
water movement (‘consolidation’ theories) and strength (constitutive modelling).  This 
course only considers strength and stiffness, with pore water being treated as either 
drained or undrained.  The work hardening theory of plasticity is used, in the form 
developed as critical state soil mechanics (CSSM) after the title of the book that gave the 
first complete exposition of the approach.  The models used are Original Cam Clay and 
NorSand; these names do not denote a restriction to a soil type but are best thought of 
as simply brand names for a particular collection of equations. 
 
The course comprises four modules. The first module is about soil behaviour seen in 
laboratory tests – there is little theory as such here other than the idea that soil 
comprises particles.  The second module looks to the ideas about how soil behaviour 
can be represented in a computable manner albeit a little idealized.  The third module is 
about a proper generalization of the theory that works for all soils under all conditions.  
So far everything has been focused on laboratory tests where we know the soil’s void 
ratio and type – which you likely will not know insitu. The fourth module is about the 
piezometric cone penetration test (CPTu) which as well as giving all sorts of stratigraphic 
information is the most accurate measurement of insitu soil state and which allows 
laboratory-based understanding to be used in practical situations. 
 
Lectures are interwoven with tutorials, as that is the most effective way of learning. You 
will need to be familiar with Excel and making graphs within Excel. 
 
Analytical methods (FLAC, Plaxis, ABAQUS etc) are not dealt with in this course.  
Rather, this course aims to give you the tools to obtain realistic inputs for such analyses. 
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Software Requirements 
The course is going to use Excel for nearly everything.  Initially, we will be using 
worksheets (with templates provided to save time in setting things up); this is perhaps 
the easiest way to appreciate how things like stress-dilatancy come together with the 
hardening law.  However, when you start using the theory as an engineer you will find 
that you need to quickly look at various tests to determine soil properties.  And, as we 
move from ‘learning’ to ‘real soils’, we need to remove a few simplifying assumptions – 
and which causes very cluttered, and difficult to read formulae, if you stay within a 
worksheet.  Microsoft has anticipated this situation and provides a proper programming 
language, Visual Basic for Applications (VBA), that lies behind Excel and is accessed 
from the standard Excel menu bar. 
 
The course will use VBA for soil property determination and CPT processing.  This 
software will be provided, as by the time we switch to VBA you will have already 
understood how CSSM works.  There are books on programming in VBA, but what you 
need is really only to make yourself familiar with the provided code – and it is all written 
in ‘plain English’.  If you would like to know more about VBA, the book Excel VBA 
Programming for the Absolute Beginner by Birnbaum & Vine is good and easily found on 
Amazon.  You do not need it for the course, but it may be useful to you in the future as 
VBA is a truly wonderful feature within Excel for engineering. 
 
Please check that Excel on the laptop you bring to the CSSM workshop has got VBA 
enabled. You can check this as shown on the piccy below under the Excel menu 
(the shortcut is to press ‘Alt’ = ‘F11’ keys together). 

 

VBA should be there automatically with most installations of Office, but just in case 
please check and if not there get your systems folks to set it up for you before the 
course.  Excel treats VBA as a ‘macro’, so sometimes it will trigger an Enable Macros? 
warning when opening files because various idiots have written viruses using macros; if 
your system folks want to check what is there, everything in the provided programs is 
‘open code’ without password protection (ie all is immediately visible). 
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Schedule 
Note: timings are approximate and will depend on progress of participants during the workshop.  If 
need be, will extend the workshop until all participants have accomplished all steps (the largest 
stumbling block is normally the initial OCC spreadsheet, so any needed update to the schedule 
should be apparent by Friday morning). 

Thursday 6 February 2020 

Time Topic Comments 

0800 – 0830 Registration  

0830 – 0845 Introduction Overview of the course and learning goals  

0845 – 0945 1. Soil strength behaviour   Lecture: Bishop-Taylor strength model; as 
proposed and modern implementation.  
Casagrande critical state and Taylor’s extension; 
modern CSL methods.  State parameter control 
of dilatancy. 

0945 – 1000 Coffee Break Provided 

1000 – 1115 TUTORIAL. Determine soil 
properties using provided triaxial 
data.   

Numerical differentiation (in Excel). Using 
provided data: 

- develop the CSL using  

- determine strength properties  

- determine dilatancy property  

1115 – 1130 2a.  Theory of Plasticity  Lecture:  Nature of plasticity:  Yield surfaces, 
normality, hardening.  Necessary form of 
plasticity for soils. 

1130 – 1230 2b. Original Cam Clay (OCC)  Lecture: Idealizations used in OCC. Derivation of 
OCC equations. 

1230 – 1330 Lunch Break  

1330 – 1430 2c. Numerical integration 
procedure  

Lecture: Euler integration and introduction to the 
xls template used for the OCC tutorials. 

1430 - 1600 TUTORIAL. Implement OCC for 
undrained triaxial tests and verify 

Using the provided template, code OCC into 
Excel for a CIU test.  Verify the xls by comparison 
to Schofield & Wroth closed-form solution. 

1515 -1530 Coffee break during tutorial  

1530 - 1600 Continue with tutorial… This is the most difficult part of the course ! 

1600 – 1615 2d. From undrained to drained, 
with validation against test data 

Lecture: How to implement drained loading paths 
with OCC; test data provided for validation. 

1615 - 1700 TUTORIAL. Drained triaxial tests 
using OCC. 

Change the verified OCC xls to drained loading 
and compare with test data on a loose sand to 
confirm that OCC ‘works’ for some real soils. 
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Friday 7 February 2020 

Time Topic Comments 

0830 – 0900 2e. Limitations of OCC Lecture.  Why OCC does not match real soil 
behaviour most of the time. 

0900 – 1000 3. Fixing OCC for real soils  
=> NorSand (NS) 

Lecture.  Axioms; state parameter; over-
consolidation; image condition; hardening limit.  

1000 – 1015 Coffee Break Provided 

1015 – 1115 TUTORIAL.  Implement NS in xls 
worksheet  

Change working OCC xls to NS; validate NS 
against dense sand data (provided in template)  

1115 – 1200 4. Elasticity Lecture.  Shear and bulk moduli; bender and VSP 
methods; Poisson’s ratio for soils; elastic models; 
the geophysical conundrum 

1200 – 1230 5a. Moving from worksheets to 
VBA; NS implementation in VBA. 

Lecture:  proper engineering process using Excel 
and VBA; intro to VBA; introduction to the VBA; 
aspects of NS VBA implementation in the 
provided NerlerkTxl.xls template. 

1230 – 1330 Lunch  

1330 – 1430 TUTORIAL. Calibration of NS to 
Nerlerk sand test data 

Use Nerlerk properties determined in first tutorial 
to fit NS to the 5xCID + 5xCIU data provided.  
Determine the H property. 

1430 – 1445 5b. The transition form drained 
loading to undrained static 
liquefaction. 

Guided tutorial using calibrated NerlerkTxl.xls. 

1445-1515 6. Measuring  in situ using the 
CPT. Procedures, processing, and 
presentation of results 

Lecture. Important aspects of CPT investigations, 
methods for evaluating CPT data, and 
introduction to CPTplot.xls 

1515 - 1530 Coffee break Provided 

1530 – 1600 TUTORIAL. Using CPTplot.xls Become familiar with the options and procedures 
in CPTplot.xls.  Participants are welcome to 
use data from one of their own CPT 
soundings (as long as the data can be imported 
into xls) 

1600 – 1700 7a.  Getting  from CPT data in 
sands (= drained penetration).  
Introduction to CPTwidget.exe 

Lecture.  Calibration chambers; universal trends; 
effect of soil properties; importance of Gmax.  
CPT coefficient determination using finite 
element program CPTwidget.exe.  Input of 
computed calibration into CPTplot.xls 

1700 - 1800 Attitude adjustment hour 
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Saturday 8 February 2020 

Time Topic Comments 

0830 – 0930 TUTORIAL. Using CPTwidget.exe 
for drained CPT soundings 

Participants run the “widget” to calibrate CPT for 
a set of sand properties to determine the 
inversion coefficients k,m; input computed 
calibration to CPTplot 

0930 – 1000 7b.  Getting  from CPT data in 
silts (= undrained penetration).   

Lecture.  Capturing effect of measured induced 
excess pore pressure at u2; changes to 
CPTwidget inputs; calculation of Nkt factor for 
chosen soil properties.  Input of computed 
calibration into CPTplot.xls; Cadia validation  

1000 – 1015 Coffee Break Provided 

1015 - 1100  TUTORIAL. Processing results 
from CPTwidget for undrained 
penetration.   

Use provided widget output to generate a CPT 
calibration in silt.  Investigate sr, su, brittleness 
index on liquefaction.  Input calibration into 
CPTplot and explore results 

1100 – 1130 7c.  Plewes Method  Lecture. Basis of method; Reid update; site-
specific adjustment; limitations and advantages  

1130 - 1230  8.  Sands to Silts - differences in 
behaviour, similarities in behaviour 

Lecture. CSL measurement and repeatability 
with tailings; laboratory testing issue; frictional 
properties; Gmax 

1230 – 1330 Lunch  

1330 – 1415 9.  From triaxial to plane-strain and 
beyond 

Lecture.  The theory looks after you. 

1415 – 1445 10. Summary of workshop Review of key ‘learnings’; resources for 
participants in going forward. 

1445 – 1600 Open discussion and additional tutoring as requested 

1600 sharp ! Participants buy beer for course tutors… 
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Course Data Files and Templates  
The course is based on participants working on their own laptops in a tutorial setting (some 
people find it better to work in pairs).   There are several files that go with the course and 
which participants need to copy/download to their computers, as these files will be used 
during the tutorials. Files are all included under a single directory ‘CSSM_course_data’ 
and which contains the following folders: 

Folder (sub-directory) Contents 

Light Reading Papers about aspects of soil mechanics history; also a 
copy of the S&W book.  This is background information 
for those interested, and is not required reading. 

Course Notes These course notes and schedule for the workshop 

Templates for Exercises Excel templates for: 

 Tutorial 1 (determining sand properties)  

 Tutorial 2 (implementing Original Cam Clay) 

Tutorials 3 and 4 will use the completed xls developed 
in Tutorial 2. 

Tutorial 5 will use the template of Tutorial 1 together 
with the sand calibration developed during Tutorial 1 

CPT Programs Two sub-directories containing: 

 CPTplot.xls, the processing and plotting 
program; includes a user manual. 

 CPTwidget, including program notes, source 
code, executable, example inputs, and xls for 
developing the calibration 

 

These course notes cover the situation in the laboratory where void ratio is known.  
Practically, engineers must determine void ratio in the ground – a topic that has an 
extensive literature, much of which is covered in Chapter 4 of the Soil Liquefaction book.  
A convenient and easy to read article on using the CPT is the paper Determining Silt State 
from CPTu which can be downloaded (it is free) from the Geotechnical Research Journal 
at https://www.icevirtuallibrary.com/doi/full/10.1680/jgere.16.00008.  This particular paper 
describes how the CPTwidget was developed; the version of CPTwidget in the course 
downloads is a further development with outputs of pore pressure at the CPT’s u2 sensor 
location and the computed Nkt factor – both useful and important enhancements.   
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Notation 
Subscripts  

c Critical state  
i Image condition (occurs when 00  pp DD  ) 
tc Triaxial compression condition (= /6) 
h Horizontal 
v Vertical; volume 
0 Initial condition 
1, 2 ,3 Principal directions of stress or strain 

 

Superscripts 
e Elastic 
p Plastic 
Dot “.” Denotes increment  

 

Stress Variables (bar over or  denotes effective) 

1, 2, 3 [FL-2] Principal stresses 

m  [FL-2] Mean effective stress    3/321  m         

q  [FL-2] Deviatoric stress invariant 
2

1
))()()(( 2

132
12

322
12

212
1  q      

p   [FL-2] Mean effective stress (= m ) 

q [FL-2] Triaxial deviator stress.  q= 1 –3  (= q ) 

 [-] Dimensionless shear measure as ratio of stress invariants 
   q m/   

 [Rad] Lode angle, 3
321 /5.13)3sin( q         

 [Rad] Included angle between direction of major principal stress 
(the “1” direction) and coordinate frame of reference 

u [FL-2] Pore pressure 

 

Strain Variables (dot superscript denotes increment) 
1, 2, 3 [-] Principal strains (assumed coaxial with principal stresses) 

v  [-] Volumetric strain 321   v  
 

q 
 
[-] 

 
Shear strain measure work conjugate with q  

 321 )cos(sinsin2)cos(sin 333
1   q

 
pD  [-] Plastic dilatancy, as strain rate ratio p

q
p
v    
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State Variables 
e   [-] Void ratio 
K0 [-] Geostatic stress ratio, 

vhK 0
 

 [-] State parameter,  = e - ec 
R [-] Over-consolidation ratio ''max ppR   

 [-] Scaling factor (soil property) for state dilatancy 

 

Elasticity  
E [FL-2] Young’s modulus 
G [FL-2] Shear modulus  
K [FL-2] Bulk (volumetric) modulus 
Ir [-] Soil shear rigidity  (= mG / ) 

 [-] Slope of elastic line in e-ln(m) space 
 [-] Poisson’s ratio 

 

Critical State  
 [-] Reference void ratio on CSL, defined at p = 1 kPa 
 [-] Slope of CSL in e-ln(m) space for semi-log idealization 
10 [-] Slope of CSL, but defined on base 10 logarithms (= 2.3  
M [-] Critical friction ratio, equals c at the critical state.  Varies 

with Lode angle, value at triaxial compression (Mtc) taken 
as reference soil property.    

 

CPT Parameters and Variables 
qt [FL-2] CPT tip resistance after correction for unequal end area  
fs [FL-2] CPT friction sleeve stress measurement 
uc [FL-2] Pore pressure measured by CPT during sounding at 

shoulder location (sometimes denoted as u2 location in the 
literature). 

Q [-] Dimensionless CPT resistance based on vertical stress. 
Corresponds to standard usage within in situ testing 
community, 

0,0, /)( vvtqQ    

Qp [-] Dimensionless CPT resistance based on mean stress, 
00 '/)( ppqQ tp   

Bq  [-] CPTu excess pore pressure ratio based on excess pore 
pressure measured at ‘u2’ location: Bq =(u2-u0)/(qt-v0) 

F [-] Stress normalised CPT friction ratio: F =fs/(qt-v0)  
k, m [-]    Soil property and rigidity specific coefficients in 

equation relating Qp to  
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Soil Strength and Dilation 
Soil behaviour, across the spectrum from gravels to clays, is controlled by effective 
stress.  The details of soil behavior are most directly seen in drained tests and which 
leads to a preference for understanding the physics using sands simply because 
drained tests in clay take a lot of time.  Thus, this section largely looks to sand data 
supplemented by some data on clays.  Undrained response will be dealt with in the 
following section when we involve theory.  

Soil is Particulate 
Scoop up some sand on a beach and look at it in your hand – you can see particles, not 
a solid material.  If you use a microscope, the nature of the particles is even clearer.  If we 
move to finer soil the eye is no longer enough and we may resort to a scanning electron 
microscope for silts, see Figure 1, and observe a collection of individual particles of 
different sizes.  

 

Figure 1:  Particle shapes in a SILT seen with a scanning electron microscope 

A collection of equal sized spheres sketched on Figure 2 was suggested as a first 
idealization of soil more than a century ago (Reynolds, 1885).   This idealization leads to 
fundamental concepts of how and why soil behaves as it does.  If a collection of equal 
sized spheres is in its densest packing (body centered cubic, right hand side of Figure 2) 
then any distortion of the assembly will cause the assembly to expand: dilatancy.  
Conversely, if the collection is in its loosest packing (face centered cubic, left hand side of 
Figure 2) then any distortion will allow the particles to pack closer together: also a form of 
dilation, albeit in the opposite sense.  These are ‘kinematic’ ideas associated with how the 
(supposedly rigid) particles must move to accommodate distortion of the assembly, with 
no theory as such.  If we accept soil is particulate, and approximates spheres, as we hope 
all can agree simply from looking at soil (using a microscope if needed), then we must 
accept that dilation is going to be inextricably linked to soil behaviour.    
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Figure 2:  Reynolds (1885) kinematic explanation of dilation 
The packing in either the left or right arrangement is controlled by the bounding spheres; 
and it either case distortion causes a change in volume of the assembly 
 

Interlocking and True Friction  
Early strength testing used direct shear as the equipment was simple, Figure 3.  Example 
test results shown on Figure 3 illustrate the familiar Mohr-Coulomb strength criterion.  The 
interesting question that then follows is the physical nature of the ‘cohesion’ intercept, 
since our photographs of soil particles (Figure 1) show there cannot be any bonds between 
the particles; so, the ideas in the 1940’s developed primarily at Harvard (Casagrande) and 
MIT (Taylor), were that the ‘cohesion’ was related to particle ‘interlocking’ – and 
interlocking is the terminology you find in early publications about the nature of soil 
strength (eg Taylor, 1948).  

Figure 3: Shear box testing and example results (Skempton & Bishop, 1950) 

The idea of strength alone is missing half the story.   Looking at the results of a direct 
shear test make it quickly apparent the Reynold’s idea about volume change during shear 
are correct – dense sand samples expand with the top cap rising during shear (note the 
micrometer dial in Figure 3).  This led to the idea of ‘energy corrections’ since the top cap 
rising against the confining stress was clearly doing work – and thus that not all of the 
applied shear stress was being resisted by ‘friction’.   The corollary was that workers in 
the 1940-55 period developed interest in the nature of mobilized friction.  
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Taylor (1948, Sect. 14.9) provides an example of the importance of interlocking noting that 
it contributed 26% of the strength measured in a direct shear test on dense Ottawa sand 
(a standard laboratory soil).   However, it was Bishop (1950) who first put the mathematics 
to the behaviour deriving, using considerations of incremental work, the strength equation 
(see Figure 4): 

ఛ

ఙ೙
=

ఛ೑

ఙ೙
+

ఋ௩

ఋ∆
        [1] 

 

 
 
Figure 4: Soil strength related to rate of volume change in direct shear 
(Bishop, 1950) 
 
 

 
Figure 5: Evolution of soil strength components in direct shear (after Bishop. 1950) 
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As interest was in separating ‘interlocking’ from ‘true friction’, Bishop used equation [1] to 

compute f for a loose and a dense direct shear test with the results shown on Figure 5.  

Notice how f rapidly develops to a near-constant value, which is rather similar whether 

dense or loose.  Also notice how the strength component from dilation evolves with shear 
strain – the contribution from rate of volume change with shear is not something applying 
at just peak strength.  Sample expansion increases strength, as expected, but sample 
volume decrease decreases the strength; mathematically, the same equation controls and 
there is a complete spectrum of behaviour depending on how void ratio evolves.  In 
essence, this is the behaviour anticipated from idealizing soil as a collection of particles 
as per Figure 2. 

The maximum value of the stress ratio f/n was called the tangent of the angle of internal 

friction; there was a tacit implication that this internal friction was a true soil property unlike 
strength (strength depended on how much dilation developed). 

These ideas of internal friction and dilation led to the ‘sawtooth’ idealization for soil 
strength, Figure 6, where the internal friction is that on the sliding tooth face while dilation 
is the tooth angle – a simple way of appreciating the basic behaviour. 

 

 
Figure 6: Sawtooth model for soil strength 
 

From Direct Shear to Triaxial: Invariants 

The direct shear test is mechanically simple but has two deficiencies: it is difficult to control 
drainage and associated measurement of pore water pressure; and, only half the stresses 
acting on the soil are measured.  So, on one hand the direct shear test is not easy to use 
for exploring the spectrum of soil behaviour and on the other hand, even if that limitation 
is overcome, there are insufficient measurements to know the true stress state.   The 
triaxial test suffers from neither of these problems and has become the reference test for 
soils.  The classic reference on the triaxial test is Bishop & Henkel (1957) and that book 
still has much of value; however, today it is normal to use computer control and data 
acquisition rather than mechanical methods for loading and manually recorded gauges for 
soil response – have a look at the website www.gdsinstruments.com to see what is now 
possible and used in commercial ‘good practice’ testing. 
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As the triaxial test provides complete data on stresses and strains, it is now possible to 
improve on our understanding of soil behaviour.  Metals deform at constant volume and 
confining stress has no effect on their behaviour; soils (= particulate materials) are more 
complicated in that their behaviour depends on confining stress (= ‘frictional’) and they 
change volume with changes in confining stress and changes in distortion (= dilatancy).  
The mechanics of soil behaviour are simplified if we recognize these processes and 
choose appropriate stress and strain measures.   

The choice of stress and strain measures is also influenced by the principle that, for an 
isotropic material with no intrinsic sense of direction, it must not matter if we are looking 
from the left or from above when we define our stress and strain measures; this is the 
notion that we should use stress and strain invariants that have no sense of direction.    

The triaxial test uses cylindrical samples and thus two stresses and two strains are always 
equal because of cylindrical symmetry.  For the usual situation of standard triaxial 

compression loading 2 =3 and 2 =3.  The stress and strain invariants for this condition 

of symmetry are shown on Table 1; note that all stresses are ‘effective’. 

 
Table 1: Stress and strain invariants for triaxial compression   
 
 Distortion Volume Change 
Stress q1 -3 p’1 +3) / 3 

Strain q = 2/3 (1 -3) v =1 +3 

 

The ‘2/3’ factor appearing in the deviatoric strain invariant q is there to make the stress 

and strain invariants work conjugate, which is just a fancy phase that the incremental work 

W on the soil being given by: 

𝛿𝑊 = 𝑞 𝛿𝜀௤ + 𝑝ᇱ𝛿𝜀௩        [2] 

As a further wrinkle, note that the ‘compression positive’ convention of soil mechanics 

makes void ratio reduction correspond to positive volumetric strain: v = - e/ (1+e). 

The invariants shown on Table 1 generalize to 3D, but triaxial compression is sufficient for 
a practical engineer to understand soil behaviour and so we restrict this course to triaxial 
compression.  These invariants are sometimes called ‘Cambridge stress variables’ (or 
equivalent phrase) in the literature, but that is a wrong attribution – these invariants were 
proposed as part of the mathematical theory of plasticity which much predates their 
adoption for soil mechanics. 

Triaxial Compression Strength 

The Taylor/Bishop strength relation developed considering direct shear, Equation [1], 
generalizes to triaxial compression.  We do this by changing our parameters from those 
of a direct shear test to the invariants defined on Table 1 so that: 



Critical State Soil Mechanics  January, 2020 
 

Vancouver Geotechnical Society  Page 17 of 57 

  = M – D           [3] 

…where, by comparison with, [1]: 

     = q / p’ is used instead of /n      [3a] 

D = v / q is used instead of v/                                      [3b] 

This transformation in [3] is not quite enough.  Figure 7 shows the results from many 
drained triaxial tests on Brasted sand, with the tests ranging from loose to dense, at peak 

strength (ie plotting max vs D at max). 

 

 
Figure 7: Drained strength of a sand in triaxial compression 
 

Loose tests lie to the left of Figure 7 and show little dilation while those on the right are 
dense and dilate strongly.  As expected from the Taylor-Bishop idea of two strength 
components a straight line is a good representation of the trends in this test data.  Brasted 
sand is not unusual, and similar results to Figure 7 will be found with all other soils.  
However, there is a deviation from the Taylor-Bishop idea in that the trend line does not 
have a one-to-one slope, being fitted by the equation: 

𝜂௠௔௫ = 𝑀௧௖ − (1 − 𝑁) 𝐷௠௜௡       [4] 

Maximum dilation, in the sense of maximum volume expansion, is actually Dmin because 

of the compression positive convention of soil mechanics.  Hence max occurs at Dmin.  The 

terms Mtc and N in equation [4] are soil properties. As D=0 at Mtc, Mtc corresponds to the 
Taylor-Bishop internal friction; N represents the proportion of work going to volumetric, 
rather than distortional, strain.  Equation [4] was first stated by Nova (1982).  
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The behaviour shown on Figure 7 was for a sand; there is nothing unusual about that sand 
and others sands show similar behaviour (although the properties Mtc, N differ from one 
sand to another).  But this effect of dilation on strength has no knowledge of geology – it 
derives simply from considerations of work being done; thus we would expect it to apply 
to clays just as well as sands.  Drained tests on clay take a long time, and are not routine 
in normal engineering.  But drained tests on clay have been used for research, in particular 
during the 1950’s at Imperial College; Figure 8 shows data from tests on Weald Clay 
(Parry, 1957).  Exactly the same behaviour is seen on Figure 8 as Figure 7.    

 

 

Figure 8: Drained strength of a clay in triaxial compression 
 

Stress-Dilatancy 

Taylor and Bishop’s ideas on two-components to soil strength developed from the context 
of direct shear (shear-box) tests where the work components are obvious from the 
arrangement of the test.   But there is more to this work-based idea than just strength.   
Looking back at Figure 5, it is obvious that the mobilized shear stress, throughout the 
entire stress-strain behaviour, is strongly influenced by the evolution of the rate of change 
of void ratio (dilatancy).  This further development of the two-component idealization is 

easiest seen if we take test data and plot the mobilized stress ratio  versus the current 

dilatancy D.  Figure 9 shows two drained triaxial compression tests, one on dense sand 
and one on loose sand.  The measured data is shown on the left-hand side, and there is 
nothing unusual about these tests.  The right-hand side shows the same data, but now 
transformed using equation [3].   As can be seen, what looks at first glance to be very 
different behaviour of the loose to the dense soil is actually a near common response of 
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mobilized stress to dilation: stress-dilatancy as the behaviour is known.  Really, this takes 
us back to Figure 2 – any deformation involves dilation, but it takes imposed stress to 
cause that deformation.  The coupling between ratio of deviatoric stress to mean stress 
with dilatancy (= rate of dilation) is intrinsic to particulate materials, including soils whether 
gravels, sands, silts, or clays (or any mixture of these); it is a direct consequence of 
dilatancy being a work transfer mechanism, exactly as identified by Taylor-Bishop in their 
assessment of how strengths developed in a shear box. 

 

 
 
Figure 9: Drained triaxial compression data transformed to stress-dilatancy  
 

Critical Void Ratio  
It is apparent that the very loose packing of particles sketched on Figure 2 will contract 
when distorted while the alternative a very dense packing will expand – the change of 
volume with distortion will depend on the void ratio.  Of course, soils comprise a distribution 
of particle sizes but that does not change the basic insight from this simple idealization.  
And, it is no great leap of the imagination to think that there may be a void ratio between 
these two limits where soil deforms at constant void ratio. 

Hydraulic fill dams were a common construction method during the late 1800’s to early 
1900’s, an era when there were pumps but not earth moving machinery that we have 
today; hydraulic filling was perceived as an inexpensive dam construction method.  
However, these hydraulic-fill dams had a propensity to suddenly fail by liquefaction slides 
during construction (much as is a current problem with tailings dams).  It is obvious that if 
the fill is saturated (inevitable with hydraulic fills) then contractive response with cause 
positive excess pore pressure.   This understanding was reflected in engineering the first 
liquefaction-resistant dam at Franklin Falls (New Hampshire) by the Corp of Engineers, 
directed by Lyman (1938), although more widely associated with Casagrande (1936). 
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The canonical result of the testing is shown on Figure 10 as the evolution of sand strength 
in a shear box with strain and its dependence on void ratio.   A common end point was 
found, denoted as the critical void ratio which was the balance between some soil particles 
moving apart while others were falling into void space as the soil was deformed (in 
essence a dynamic situation of birth-death processes in terms of the contacts between 
the particles).   And “critical” really meant what it said – it was the criterion of a safe density 
in constructed engineering work, with the practical concern to avoid sudden transitioning 
of drained construction with no excess pore pressure into an undrained liquefaction failure. 

 

 

Figure 10: Origin and meaning of the critical void ratio, Casagrande (1936) 
(author’s emphasis) 

 

The critical state highlighted on Figure 10 comprises two conditions:  void ratio change 
with strain is zero; and that absence of void ratio change continues indefinitely.  These 
ideas are best expressed using dilatancy D as: 

D = 0           [5a] 

D / q = 0                                           [5b] 

If only condition [5a] is met, for example if you look closely at the volumetric strain behavior 
of the dense test shown on Figure 9 D=0 occurs at about 0.5% axial strain (when the 
volumetric strain trend reverses), the soil can be far from the critical state.  D=0 can be, 



Critical State Soil Mechanics  January, 2020 
 

Vancouver Geotechnical Society  Page 21 of 57 

and usually is, a transient condition.  In undrained tests, D=0 corresponds to where the 
stress-path reverses direction in those tests showing an ‘S’ shaped path, commonly called 
the ‘pseudo steady-state’ or ‘phase-change’ or ‘quasi steady-state’.  Relying on [5b] is 
crucial to getting the critical state correct. 

Triaxial testing is used to determine the critical void ratio in sands, silts, and clays.  It is 
much easier to work with loose (contracting) samples because dense samples tend to 
form shear-bands (‘localize’) and where the void ratio of the overall sample does not reflect 
the void ratio in the intense shear zone.  Both drained and undrained tests are used. 

Undrained triaxial tests on loose soils often reach their critical state at less than 10% axial 
strain and well within the limits of the equipment; Figure 11 shows an example. Notice how 
the sample continues to deform at constant p,q in the critical state. 

 
Figure 11: Example of critical state in load-controlled undrained triaxial compression 

Casagrande appears to have viewed the critical void ratio (ec) as a constant, akin to emin 
and emax; but that was quickly found to be wrong.  Fort Peck dam failed shortly after the 
work by the Corps at Franklin Falls.  Taylor (working at MIT, just down the road from 
Harvard in Cambridge, Massachusetts) applied Casagrande’s ideas about the critical void 
ratio to the investigation of Fort Peck and found that the critical void ratio depended on the 
effective confining stress (see Fig 14.12 of Taylor, 1948) – a dependence of critical void 
ratio on mean effective stress that today is known as the critical state locus (CSL).   
Taylor’s identification of the critical void ratio was not that used today because he focused 
on zero volumetric strain at peak strength rather than zero dilation rate, but this only 
causes an offset in the estimate of the CSL and does not negate the importance of 
identifying Casagrande’s error. 

However, most investigation of this dependence on stress level was in the UK rather than 
the USA, and was for clays not sands; part of the reason for this change in emphasis is 
that void ratio (at least at that time) was a lot easier to measure with precision in clay 
samples than in sand.   Various workers contributed to the testing, with Parry (1958) giving 
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a very good synthesis and which supported a unique CSL, regardless of whether the tests 
were drained or undrained: Figure 12. Parry’s results can be expressed as: 

𝑒௖ = Γ − 𝜆ଵ଴log (𝑝௖
ᇱ)        [6] 

 

…where ec is the critical void ratio and 10 are the soil properties (the subscript ‘10’ 

denotes the logarithm base).  Parry also observed that the CSL and isotropic normal 
compression line were parallel in the tested (remolded) clays; a corollary of which is that 

10 = Cc where Cc is the familiar compression index. 

This semi-log form of the CSL given by Equation [6] is usually adequate for engineering, 
in sands, silts and clays, over the stress range 30 kPa < p’ < 800 kPa.  Outside these 
limits, an upper void ratio limit may be needed on one hand while on the other recognition 
of constant compressibility may be appropriate at high confining stress; Verdugo (1992) 
provides insightful comment.   Neither of these factors in any way affects the validity of the 
CSL as a limit condition in shear – rather, it is a matter of what level of detail is wanted in 
the representation of the CSL.  

Leaping a little ahead of the historical story, accurate determination of the CSL in sands 
developed at Harvard in the late 1960’s (Castro, 1969) and gained considerable ease and 
accuracy in the 1980’s with the development of post-test sample freezing (in Calgary, see 
Been et al 1991).  Nowadays, accurate CSL determination can be done by any good soil 
mechanics laboratory – although engineering judgment is needed in the data evaluation. 

An example of a CSL in sand determined with modern methods is shown on Figure 13; 
the ‘blue dots’ on this figure are the identified critical state by inspection of the stress-strain 
curve in undrained tests while the loose drained tests do not quite get to the CSL within 
the limits of the equipment (and thus the CSL is inferred as a little lower void ratio than 
attained in these loose drained tests).  Overall, the CSL shows a power-law, rather than 
semi-log, form; this kind of power-law seems most common for sands formed with a 
significant fraction of non-quartz particles.  Grain-crushing may be a further contributor. 

There has also been much confusion about ‘uniqueness’ of the CSL.  This generally 
(invariably?) derives from experimental workers who fail to understand that the critical 
state is not a transient condition (commonly called the pseudo-critical state).  More 
formally, uniqueness simply means that any combination of the three effective principal 

stresses (1, 2,3) produces a single value for the void ratio; physical sense further 
requires that increasing mean stress implies decreasing critical void ratio. 
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Figure 12: Rates of changes in dilation (drained tests) and pore pressure (undrained 
tests) at peak strength.  Loose contractive samples are plotted in (a) and dense dilatant 
samples in (b).  The bounding line in each pair of plots is common, and inferred to be the 
CSL.  From Parry (1958).  
 
 

 
Figure 13: Example of a CSL in sand determined using modern methods 
(note the departure of the CSL from the semi-log form shown as dashed line) 
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State-Dilatancy 

Taylor and Bishop’s ideas on soil strength having two components provides an excellent 
understanding of soil behaviour but, looking at Figures 7 and 8, begs the question: why 
does a particular value of Dmin develop?  There is a missing component. 

The starting point to progress is to look at Figure 13, and the various tests shown on it.  
Notice that the tests can start anywhere, both in terms of initial stress and initial void ratio; 
let us call the combination of e,p at starting point state ‘A’.   Wherever we start, we end up 
on the CSL (the green line); where on the green line will depend on the loading path, but 
let us call the end point e,p state ‘B’.  In physics, if you are going from state ‘A’ to state ‘B’ 
then you expect the speed of movement to be proportional to the distance from the end 
state.  You will have encountered this idea in high-school physics when introduced to 
radioactive decay, and you will know the same idea in geotechnical engineering from a 
falling head hydraulic test (laboratory or insitu); in mathematical terms, both processes are 
described by the first-order rate equation (check your undergraduate math text…).   Soil 
mechanical behaviour is no different.   

A measure of deviation from the end state is needed.  The end state is the critical void 
ratio and, to keep things simple, we define that deviation measure at constant mean stress: 

𝜓 = 𝑒 − 𝑒௖           [7] 

… where  is the soil’s state parameter, the name reflecting that any soil exists over a 
spectrum of void ratios and we need a state measure analogous to temperature of a gas. 
Notice that the state parameter is not affected by the particular shape of the CSL or the 
equation used to describe that experimentally determined shape.    

That the critical void ratio is the endpoint of all loading paths is then given by requiring that 
the deviation measure decreases with distortion: 

𝑑𝜓 = −𝑔(𝜓) 𝑑𝜀௤            [8] 

Physical sense requires that the function g() be ‘single-valued’ and return positive values 

for positive , with the negative sign emphasizing that the deviation from the end state is 

to be reduced with distortional strain.   A little bit of mathematics (see Appendix A) leads 
to the elegant state-dilatancy relation: 

𝐷௠௜௡ = 𝛸 𝜓            [9] 

…where  is a scaling coefficient and is a property of the soil (in critical state soil 

mechanics it is a convention that all properties are upper-case Greek font; here the 
property is upper-case ‘chi’). Putting equation [9] in [4] gives soil strength in terms of its 
void ratio and the confining stress.   

Does the mathematics work?  Figure 14 shows some test data, and it is immediately 
apparent that [9] is a very good representation of what was measured. 
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Figure 14: State-dilatancy of Brasted sand 

One caution.  The widely-cited Been & Jefferies (1985) was a ‘laboratory paper’ that 
synthesized a large body of triaxial test and, as such, it was natural to work with the sample 
void ratios at the start of loading – all very convenient, and requiring no assumptions or 
models.  But, in terms of mechanics, actually not acceptable.  Thus, Figure 14 is given in 

terms of the state parameter  at the instant of Dmin – a bit of data processing is needed 
for proper mechanics.   

 

Tutorial 1 – Determining soil properties 
Using the supplied triaxial data on Nerlerk sand: 

 Determine the CSL of Nerlerk sand using the undrained tests to give the soil 

properties  

 Numerically differentiate (using central difference method) the reported data for 
Test 3 to compute D vs axial strain 

 Find Dmin and max for each test and plot these results to determine the properties 

M, N 

 Using the determined CSL, determine the dilation coefficient .    
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Elasticity 
Elasticity is, possibly surprisingly, essential to understand how undrained strengths 
and stiffness develop.  Because elasticity is common to everything that follows, it is 
helpful to present it now before dealing with plasticity.  Elastic behavior used to be 
difficult to measure (requiring very precise transducers) but the advent of geophysical 
methods, both in the laboratory and insitu, has made elastic measurement routine in 
geotechnical practice. 
 

Isotropic Moduli 
Soil is generally anisotropic with, say, its stiffness in a horizontal loading direction being 
greater than for vertical loading.  But, anisotropy is somewhat secondary to the basic 
influence of void ratio and there is the further point that there is no point in adding the 
complexity of anisotropy before you have an isotropic idealization working.  There is also 
the important practical point that we have enough trouble measuring soil properties without 
adding the additional requirement that we must measure in every direction as well. 
Geotechnical engineering practice is dominated by isotropic elasticity and reasonably so. 

You will have encountered isotropic elasticity as part of your engineering education, in 

particular with the two elastic constants of Young’s Modulus (E) and Poisson’s Ratio ().  
In the case of soils, it is very helpful to separate their behaviour into distortional and 
volumetric aspects; doing so makes it at least convenient to represent elasticity in terms 
of a shear modulus (G) and a bulk modulus (K).  The relation between these alternative 
representations is:  

𝐺 = 𝐸/ (2(1 + 𝜈))         [10a] 

𝐾 = 𝐸/ (3(1 − 2𝜈))         [10b] 

Elastic Strains 

Because we are using work conjugate strain invariants, it is convenient to also have elastic 
strain increments in terms of these invariants.  These are: 

 Δ𝜀௩
௘ = Δ𝑝ᇱ/𝐾        [11a] 

 …and 

 Δ𝜀௤
௘ = Δ𝑞/3𝐺        [11b] 

Note the “3G” in [11b] which arises because of the definition of this invariant and which is 
not the “2G” you might have guessed from this being a shear strain measure. 

Geophysical Measurement 
The travel velocity of elastic waves is readily measured geophysically: the travel time of 
an identifiable signal is recorded between a source and a receiver and converted to a 
velocity using the length of the estimated ‘ray path’ for the elastic wave.  The first-arrival 
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is the ‘P’ (=compression) wave; the ‘S’ (= shear) wave travels more slowly, but is polarized 
– so ‘polarity reversal’ techniques are used to identify the S wave within other arrivals.  
Thus, any measurement of S-wave velocity involves two measurements.  The modern 
technique is to make each of these ‘two’ measurements multiple times and ‘stack’ (= add) 
the signals, as that enhances the true signal over background noise.  

The P-wave has limited value in soils as it is dominated by wave propagation through the 
pore water of the soil (if the soil is saturated, which is usually the case).  But, the S-wave 
is now widely used because the S-wave velocity (Vs) is unaffected by soil saturation and 
directly related to the elastic shear modulus (Gmax): 

𝐺௠௔௫ = 𝜌 𝑉௦
ଶ         [12] 

…where the ‘max’ subscript denotes that this is the limiting value for elastic shear 
modulus.   

The geophysical techniques used in our industry include vertical seismic profiling (VSP) 
or enhanced CPT, both insitu, or ‘bender elements’ in the laboratory as an add-on to 
normal triaxial testing.  All techniques are cheap, giving a lot of data for very few $. 

Poisson’s Ratio 
There is little data on Poisson’s Ratio because it is difficult to measure.  If triaxial tests are 
used to assess soil elasticity, then ‘local strain’ transducers mounted on the sample are 
needed – which pretty much is rather fancy research testing.  If geophysical methods are 
used, which are possible in principle because Poisson’s Ratio is a function of the ratio of 
the compression wave velocity in the soil skeleton and the shear wave velocity, then we 
run into the problem that the compression wave velocity in saturated soil is dominated by 
the compressibility of the pore fluid rather than that of the skeleton (practically, with a 
saturated soil, all you measure is the elastic wave velocity in water).  Thus, there is not a 
great deal of research on the topic.   

One of the most significant studies on the elasticity of soil was the extensive testing of 
Ticino sand by Bellotti et al (1996).  Although this study was directed towards anisotropy, 
if the slightly anisotropic moduli of the soil are approximated with an isotropic idealization 
the data can be used to estimate Poisson’s Ratio in the various experiments.  This 
approximation gives a plausible range of: 

0.15 <  𝜐 < 0.25        [13] 

It is not uncommon to use this range for all particulate soils (ie those where the particles 
are somewhat spherical as opposed to, say, clay mineral platelets) because of the 

absence of other comparable studies.  Practically,  ~ 0.2 is a plausible value for soil and 

consistent with soil behaviour in drained triaxial compression; it is our starting point.  
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Relationship Between G and K 

Most (all?) soils appear to show a near constant Poisson’s ratio () even as the elastic 

moduli change with stress level, although it must be admitted that there is not a great deal 
of data.  The problem is that measuring Poisson’s Ratio in a triaxial test involves very 
fancy local strain measurements and with careful testing to ensure the sample is in its 
elastic zone.  Or we can use bender elements, but then the sample has to be dry else we 
only measure the compression wave in water and which prevents calculating a correct 
elastic ratio.  The canonical study on this topic is the extensive testing of Ticino sand by 
Italian researchers, see Bellotti et al (1996) in Geotechnique.   

The apparent near-constant  makes it very convenient to relate the bulk (K) and shear 

modulus of the soil (G) through: 

𝐾 = 2𝐺(1 + 𝜈)/ (3 − 6𝜈)       [14] 
 

… and with the same dependence on stress level and void ratio between the two elastic 

moduli.  Putting plausible values for in [14] gives: 

   K = 1.33 G … for  = 0.2 

  K = 1.10 G … for  = 0.15 

That is, as a rule-of-thumb (given the variability in measured values), we expect broadly 
similar numbers for K, G regardless of any effect of density or confining stress.  

Effect of Stress and Void Ratio on Elastic Moduli 
Our starting idealization of soil as a collection of spherical particles immediately suggests 
starting with the ‘classic’ Hertz (1882) theory of deforming contacts between elastic 
spheres; this theory indicates that K should depend on confining pressure with an 
exponent of one third.  Equally, there must be an effect of void ratio, as denser packings 
have more contacts.  Some data, predominantly on silt tailings, illustrating these aspects 
is shown on Figure 15.  Sands show comparable behavior. 

Many workers have looked into how void ratio and stress level affects G, with various 
equations suggested to represent the two effects. An acceptable relation, and which works 
well across a range of soils, is:      

𝐺 =
஺

௘ି௘೘೔೙
൬

௣

௣ೝ೐೑
൰

௕

         [15] 

…where pref = 100 kPa by convention (this is done to avoid A having odd units).   A, emin, 
b are all soil properties: A is a normalized modulus in the same units as G (typically MPa); 
emin amounts to the transition void ratio from ‘particulate’ to ‘rock’ and is somewhat denser 
than measured using the ASTM procedure (try emin about 0.1 denser than that measured 
in a maximum density test); and, b is a modified form of the Hertz exponent, being typically 
about double the theoretical value of one-third.   
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Figure 15: Examples of measured trends for Gmax in silts 

 

Strain-dependent Elastic Modulus 

Applied mechanics does not allow for any strain-dependence of elastic moduli, and this 
very fundamental requirement is borne out by data.  Figure 16 shows the results of a 
triaxial test on dense sand in which bender elements have been used to measure G at 
various strains: G does change slightly because of the increase and subsequent decrease 
in p during a standard drained triaxial compression test; this change in G is accurately 
predicted by [15]. 

 

 

Figure 16: Measured Gmax at various stages of a drained triaxial test on dense sand  
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Plasticity Theory 
 
So far, everything has followed from the idea that the grains of soil you can see in your 
hand (or under a microscope) can be represented as essentially rigid particles that 
interact with each other as the soil mass is deformed.  This idea has led to both stress-
dilatancy (which gives detail about the stress-strain behaviour) and state-dilatancy 
(which gives the current strength).  But there is still one important missing factor: soil 
deformations are irrecoverable most of the time.  Understanding soil needs adding this 
irrecoverable aspect to the stress and state dilatancy: plasticity theory.  There are 
always four elements to plasticity theory: yielding; plastic flow; work hardening; and 
the ‘consistency condition’.  These elements are discussed in this section. 
 

Soil is Plastic 

Undergraduate soil mechanics courses always involve some shear tests, possibly a 
simple shear box or perhaps a triaxial test.   Loading tests on soil, whether clay or sand, 
will show that most deformation is not recovered when the load is removed.  Figure 17 
illustrates an example of a triaxial test, and defines the irrecoverable and recoverable 
components that are known as plastic and elastic deformation respectively.   You can do 
your own tests easily enough and you will always find behavior similar to Figure 16; never 
doubt that plastic strains are an exceedingly important part of soil behavior. 

 

 
 
Figure 17: Occurrence and definition of plastic strain (dense Erksak sand, drained) 
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Plastic behaviour is not a recent subject, having been studied for some 150 years.  Why 
so much study? Two basic reasons.  First, because plastic behaviour is so common and, 
in the case of metals, the basis of many industrial processes (for example, designing the 
form for stamping the sheet metal to make your car).  Second, because elasticity gives a 
one-for-one relation between stress and strain whereas plasticity is very different, plasticity 
often coming down to strain indicating stress but not the opposite – you cannot substitute 
plastic modulus for an elastic one; a new theory is needed. 

The separation of displacements (and strains) into the two components illustrated on 
Figure 17 is fundamental to representing the mechanical behaviour of materials at the 
macro scale; this separation is known as the elastic-plastic strain decomposition and 

applies to any strain increment d (i.e. be the strain principal, in a particular direction, or 

an invariant): 

𝑑𝜀 = 𝑑𝜀௘ + 𝑑𝜀௣           [16] 

…with the superscripts denoting elastic and plastic.  Equation [16] is universal to plasticity 
theories whether for soil, steel, copper etc.  Elastic strains are familiar, being the starting 
concept of every undergraduate civil or mechanical engineering course.  Plastic strains 
are perhaps less familiar and connected to the idea of ‘yield’, the stress conditions that 
allow plastic strains to arise. 

Yielding and Yield Surfaces   

Coulomb (1733) identified yielding as an important behaviour in soil, but it was Tresca 
(1864) who carried out experiments on the punching and extrusion of metals and first 
formalized a general yield condition.  Subsequently, various workers followed two routes 
although restricted to metals. Some investigated the yield condition with various 
experiments.  Others invoked physical or mathematical ideas, for example the Von Mises 
yield criterion corresponds to a limiting value for the elastic shear strain energy.   

Regardless of how derived/investigated, a yield surface is simply the limit of a region in 
‘stress space’ within which all stress increments produce only an elastic response; you 
can choose your stress space to be expressed by principal stresses, but it is generally 
more useful to show (and express) the yield surface using stress invariants.   The region 
of elastic response is defined by a continuous (and convex) curve: the yield surface.   

Overall, by about 1935 there was a complete theory of plasticity for metals; in this context, 
what is meant by ‘theory’ is a complete framework (set of equations) that broadly matched 
experimental observations. This plasticity theory does not explain the underlying 
behaviour of the metal that causes plasticity, which is actually the movement of 
dislocations within the metal.  Plasticity theory is an abstraction for representing the effect 
of underlying processes; it gains a fundamental slant through invoking the Second Law of 
Thermodynamics in considering plastic work (as plastic strains are permanent, work is 
done and dissipated as heat – bend a piece of metal repeatedly and feel it warm up to the 
touch).  
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Although Coulomb identified plasticity as intrinsic to soil behaviour nearly three hundred 
years ago, not much developed in terms of applying plasticity theory to soil until the 1950’s.   
Then, much like metals, developments with soils included both experimental work and 
theoretical studies.  However, both approaches were complicated by two aspects where 
soils differ from metals: soil yielding depends on the mean stress (which has no effect in 
metals at all) and soil generally changes volume during plastic distortion (while metals 
yield at constant volume). With the exception of the undrained strength of clay as 

represented in a total stress paradigm (“= 0” and so forth), which reasonably matches 
Tresca plasticity if the soil is not brittle, something more than just adopting metal plasticity 
was needed – which should not be a surprise as soil plasticity is about realigning particle 
contacts and void space change rather than the movement of dislocations between 
crystals in metals.  

 

 

Figure 18: Example of a yield surface (shown using invariants to define the space)   

 

Getting slightly ahead of things, Figure 18 shows an example of a yield surface for soil; 
we will derive this yield surface later in these notes. Yield surfaces are expressed by 
equations, the equations being in terms of the stress system adopted (principal, cartesian,  
or invariant) and one or more parameters characterizing the size and shape of the yield 
surface in terms of the chosen stress system – think of the yield surface as defining the 
‘strength’ of the soil.    
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Classically, all the terms defining the yield surface are bundled into one side of an 
equation.  Thus, the general form of the yield surface is: 

F =  f(1, 2, 3, ‘strength parameter’, ‘shape parameter’,…) [17] 
 
…where with this arrangement:  

           𝐹 <  0  ⇒    𝑒𝑙𝑎𝑠𝑡𝑖𝑐       [17a] 

𝐹 =  0  ⇒    𝑝𝑙𝑎𝑠𝑡𝑖𝑐           [17b] 
   

Strain increments within a yield surface are always purely elastic, but that begs the 
question: what happens on the yield surface?  By definition, plastic strains develop on the 
yield surface, but in which direction and to what extent?  There are two ideas here, which 
are known as, respectively, the flowrule and the hardening law (roughly equivalent to 
Poisson’s ratio and Young’s modulus in elastic theory).   

 
Flowrule 

Since plastic strains only develop on the yield surface, it is natural to indicate the relative 
amounts of those strains in a diagram that includes the yield surface.  This is done by 
plotting both stresses and strain increments on the same axes – see Figure 18.  You can 

use 1, 1 etc but the combinations of stress and strain increment used must be work 

conjugate as explained earlier in these notes; Figure 18 uses the work conjugate invariants 
for a triaxial test. 

In Figure 18, the strain increment vector defines dilatancy; the basic behavior of soil seen 
in experiments simply translates to a vector in stress space.  At this point we run into an 
important idea (actually, a theorem; Drucker, 1954) which is that, for work conjugate stress 
and strain increment measures, the plastic strain increment vector will be perpendicular to 
the yield surface: normality (also called an associated flow rule).  This is the concept 
shown on Figure 18.    

At this point we know the relative amounts of plastic strain, but not their magnitude.  We 
need to consider how the yield surface responds to these plastic strain increments. 

Hardening  
Plastic theory may seem a bit of a steep learning curve at this stage, but you will already 
be familiar with some aspects and what you are familiar with is now important.  Think of 
the pre-consolidation pressure during oedometer compression of a clay sample, which 
pressure is no more than the yield stress for a particular loading path.  And, as you 
accumulate plastic strain (‘normal consolidation’) then the pre-consolidation pressure 
increases: plastic work hardening. This behavior is generalized from the familiar 
oedometer test to the behavior of yield surfaces. 
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Yield surfaces generally evolve, expanding or shrinking with plastic strain.  The way this 
works can be seen on the drained triaxial test shown earlier on Figure 17.  Consider the 
first (left hand) unload-reload loop; clearly most strain is not recovered, so the stress-state 
at the start of unloading is on the yield surface.  Now consider the reloading. Initially, 
everything is elastic until the yield surface is met (as per Figure 17) and at which point 
plastic strains restart.  But, notice that the stress-strain curve then shows increasing 
strength with those plastic strains – this is the general form of hardening that you are 
familiar with in an oedometer but now carried across into 3D.  What is now needed is to 
codify how yield surfaces change size with plastic strain: the hardening law. 

The hardening law is as fundamental to plasticity as the yield surface.   If the yield surface 
always has the same shape, and that is the simplest starting point, we can specify the 
yield surface size by a single parameter and there are two obvious choices to do this:  the 
mean stress at maximum deviator (pqmax) or the intersection of the yield surface with the 
mean stress axis (= the pre-consolidation pressure under isotropic compression).   Which 
of the two options should be chosen ? 

A tacit view in the ideas sketched out so far is that plasticity is about large deformations 
and with the concept of ‘strength’ in the background.  Conversely, oedometer (or isotropic) 
compression is all about confined stiffness.   So, it is no surprise that pqmax became the 
preferred characterization of yield surface size for soils.  And the linkage to the critical 
state is then immediate: because pqmax  D = 0, state dilatancy – a core concept from our 
particulate idealization – becomes a natural control on yield surface evolution.  More 
formally as D = 0 is one of the conditions for the critical state we want to make this link 
clear – so, we refer to this scaling stress as the ‘image’ condition as in a way it is like 
seeing an appearance of the critical state but we are generally not there yet; this image 
stress is denoted as pimg. The hardening law will then have the general form: 

𝑑𝑝௜௠௚ = ℎ൫𝜓, 𝜎௠, 𝜎௤, 𝑝௤௠௔௫, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠൯ 𝑑𝜀
௣        [18] 

…where h() is the hardening function that will be specific to a particular idealization (or 
model). Notice the hardening law is written in terms of plastic strain, consistent with the 
theoretical framework.  If you want a yield surface to change shape as well as size, then 
more measures are needed; for example, if the yield surface was taken as an elipse we 
would need to have a property specify the ratio of major to minor axes as well as the 
measure of overall size.  In reality, we can represent a great deal of soil behaviour just 
using a simple (= constant shape) yield surface like that illustrated in Figure 17 and there 
is no reason to add unnecessary complexity. 

If you move the plastic strain increment from the left-hand side of [18] to the right-hand 
side, then h() can be viewed as a plastic stiffness or modulus.  This is true of all work-
hardening plasticity: the theory gives you a current stiffness, not a stress-strain curve.  This 
stiffness has to be integrated in our stress analysis to get the overall behaviour we are 
interested in – which is not difficult, and we will come to that shortly after dealing with one 
more aspect of plasticity theory. 



Critical State Soil Mechanics  January, 2020 
 

Vancouver Geotechnical Society  Page 35 of 57 

Consistency Condition 

Work hardening (and softening) plastic models change the size of their yield surface with 
plastic strain. The consistency condition is simply that the stress state must remain on the 
yield surface during plastic strain, so that the stress state evolves on a one-for-one basis 
with the evolution of yield surface size. For the universal description of yielding as F=0, 
the consistency condition is just: 

dF = 0           [19] 

The consistency condition is illustrated in Figure 19, which shows an initial yield surface 
that has hardened after an increment of plastic strain. The question then is: how the stress 
state has evolved?  We could try working out the intersection of the imposed loading path 
with the hardened yield surface – but, this is both tedious for an element test when we 
know the path and essentially impossible in general as it would involve solving 
simultaneous equations at every integration point.  So, conventionally, [19] is exploited 
with the yield surface differentiated to provide a further equation that is applied 
incrementally.  Don’t worry, this is simpler than it sounds as will be seen shortly.    

 

 

 
Figure 19: Illustration of the consistency condition 
(triaxial drained and undrained paths shown)  
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A Numerical World 
Some aspects of soil behavior lend themselves to being described by simple equations, 
but generally we need to work with numerical methods.  This simply is not an issue as 
all engineers use spreadsheets today rather than calculation pads and sliderules that 
dominated our calculations fifty years ago – and your starting data, whether 
oedometer, triaxial or CPT – will be digital.  But there is a little more to things than 
‘just use a spreadsheet’.  First, we need to use spreadsheets properly.  Second, we need 
to use numerical integration of the governing equations for soil behavior.  Neither 
aspect is difficult, and the needed techniques are discussed in this section.  
 

Visual Basic for Applications 

Spreadsheets (and here we take Excel as the default program) are now widely used in 
geotechnical engineering and are ubiquitous for assembling and presenting the results of 
laboratory tests.  There will be differences between companies as to what is the house 
style for graphs and the calculations, but most companies and academic faculty do a 
terrible job in their use of spreadsheets: in our experience (and we have reviewed a lot of 
spreadsheets) there widespread trend to put far too much on the worksheets with 
complicated formulae using cell references that are almost impossible to read and 
understand.  It is like going back to the very early days of computing when we had to 
program an Apple II or Sinclair Spectrum and very simple names and expressions were 
all that were allowed. But, that is why computer scientists developed ‘high-level’ languages 
such as Fortran and which offer two key features for engineers: i) variables that can be 
written using plain-English and descriptive names (eg we can use ‘lambda10’ rather than 
‘$F$21’); and ii) arrays with the associated looping constructs. 

Engineering has seen a range of high-level languages that changed (or rather become 
obsolete) rather quickly. Our problem as engineers is that our industry has minimal 
financial importance to the wider market that supports software development (just think of 
the vast intellectual effort going into ‘apps’ for your cellphone); a second problem is that 
the common expectation of everything having a graphical interface means the 
programming environment is changing as fast as new chips and operating systems evolve 
– yet all we want as engineers is the ability to calculate in a clear and structured way, and 
we would like to be isolated from changing fashions as to how things should look (which 
take time to fix when we would be rather thinking about our engineering).  Those of us of 
a certain age just loved the language QB45 that came soon after the IBM-PC became the 
dominant computing environment in our offices; but QB45 died with Windows.  However, 
Microsoft has not left us completely in the lurch and a wonderful language comes 
incorporated with their Office suite:  Visual Basic for Applications (VBA). 

VBA is a programming environment that works with the Microsoft Office applications, and 
here we are interested in Excel so we limit ourselves to that.  Components (worksheets, 
graphs etc) are ‘exposed’ within VBA for the programmer to use and manipulate – almost 
anything you can do in a worksheet can be automated using VBA.  As a rather simple 
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language with a Fortran-like syntax (it actually looks close to QB45), VBA suits many 
geotechnical needs.  You do not need the substance of a complete programming language 
to build professional-quality applications because VBA works within Excel.  For example, 
you can calculate using VBA and then plot the results as a graph within Excel. 

This is not a course on VBA and you won’t need to program in VBA to learn CSSM.  
However, as you move from ‘learning’ to ‘applying’ CSSM you will need to know a bit about 
VBA.  The ‘learning’ tutorials all start with standard worksheets as these allow the easiest 
understanding of how soil plasticity works – this is fine for the basic triaxial test with the 
simplest CSSM idealizations.   But, when we start introducing evolving friction ratios or 
over-consolidation (for example) we need to add in the details/nuances of soil behaviour 
and that gets to be horrible in a worksheet while trivial in VBA (using functions).  So, the 
public-domain software for real application of CSSM is built around VBA. You could ignore 
the VBA and just use the Excel applications provided but we hope that you do not – CSSM 
is not black-magic and if there is any one thing we hope you gain from this course it is just 
that appreciation.  Knowing how to look inside VBA is key to you being confident. 

The VBA ‘integrated development environment’ is included with Excel.  You get to this by 
pressing the short-cut keys ‘Alt’+’F11’ or through the Visual Basic launch-point contained 
in the Developer tab that shows up in Excel, circled in Figure 20 below.   

 

 

Figure 20: Accessing the VBA integrated development environment in Excel 

 

There are books on programming in VBA, but what you need is really only to make yourself 
familiar with the provided code – and it is all written in ‘plain English’.  If you would like to 
know more about VBA, the book Excel VBA Programming for the Absolute Beginner by 
Birnbaum & Vine is good.  You do not need it for the course, but it may be useful to you in 
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the future as VBA is a truly wonderful feature within Excel for engineering.  Despite saying 
this course is not about learning VBA there are three features that are really important in 
what follows.   

The original intent behind the Basic language was that is should be simple and this led to 
not requiring ‘declaration’ of variables ahead of their use – which means if you make a 
typing mistake that mistake will not be detected (it will be treated as a new variable); and 
which leads to erroneous results and/or crashing applications. Get around this issue by 
forcing VBA into a professional mode by typing Option Explicit in the first line of the code.  
All the open-source code provided does this, and this option forces declaration of variables 
(which is also a good time to annotate what they do and their units). 

Although VBA is integrated with Excel, there are different ways to do things.  In our 
applications we will take some data, for example soil properties and initial conditions, and 
then compute the entire stress-strain behaviour as (say) 4000 points.  We then use Excel 
to produce the various graphs.  If each point is transferred back to the worksheet for 
plotting as it is computed everything becomes seriously slow and tedious.  But, if the 
computation puts all the results into an array then that array can be transferred back to a 
worksheet very quickly indeed as a single item – which is the approach used.  Thus, using 
CSSM (or processing CPT data) looks very much like an old-style Fortran program that 
operates when requested and dumps its results back into a worksheet for plotting.   Easy 
to check or understand and quick to use.  This operation is ‘hung off’ buttons on the 
worksheets; check the ‘macro’ (which is actually a subroutine) associated with the button 
(left-click if you are left-handed to get to the ‘assign macro dialog) and then jump to the 
VBA code to see that sub-routine and follow where the code goes.     

The final important feature is an item of programming style: ‘named constants’.  In many 
places we have options – drained or undrained, semi-log CSL or something else.  We 
want the VBA code to be easily read in plain English and you cannot achieve that if these 
options are just referred to as numbers (1, 2 , 3 etc).   You can use text strings to show 
these choices but it is far more efficient and elegant to declare constants as, for example, 
in this code fragment: 

 

' CSL Mode 

Const semi_log = False 

Const curved = True 

Dim CSL_choice As Boolean 

 

…which allows CSL_choice to be used in code with its values shown as ‘semi-log’ or 
‘curved’.  If there are more than two choices, just list them as constants but now the choice 
becomes declared as an integer rather than a true/false choice.  Easy to read and 
understand, and widely used in software engineering. 
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Euler Integration 

When the phrase “constitutive model” is spoken, people tend to think of integrals and fancy 
mathematics.  That is a mistaken view, as very few realistic constitutive models for soil 
can be directly integrated to give a stress-strain curve for a laboratory test never mind 
used in analysis of engineering construction.  Rather, what the constitutive models give is 
the equivalent of a current stiffness that evolves – and which can only be used numerically.  
Numerical integration is not necessarily difficult. 

In the case of standard laboratory tests, if all is working ‘as advertised’, these tests all have 
the sample under uniform stress conditions – no redistribution of stress develops within 
the sample.  In reality there are end effects (restraints) and strain localization (commonly 
later in a test), but if we treat the test as uniform conditions then standard laboratory tests 
have fixed stress or strain paths that allows simple numerical integration.  The easiest 
numerical integration method to understand was introduced by Euler (1707-1783), a 
mathematician perhaps without peer.   

Euler’s method is shown on Figure 21.  Starting at point ‘j’, we compute the current gradient 
of the equation being integrated – shown as the tangent line.  We then apply an increment 
along the path to move to the new position ‘j+1’, which in our case will be an increment of 
strain.  Multiplying the gradient by the step length gives the change in value between two 
positions, and thus the new value of the equation at ‘j+1’.   This method can be used in a 
spreadsheet, and that is what this course uses. 

 

 
Figure 21:  Principle of Euler’s method for numerical integration 
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The deficiency of Euler’s method develops if the gradient changes quickly compared to 
the step size – look closely at Figure 21 and you will see the end point (open circle on the 
tangent line) is not quite on the curve we are trying to follow.  It is easy to see a problem 
developing if the gradient at the end of a step is much different from that at the start; 
commonly, this shows up as the computed results “drift” away from the true solution.  

There are more sophisticated numerical integration methods (eg Runge-Kutta), but they 
always involve more calculations.  More sophisticated methods also cloud understanding 
of what is going on, a particularly undesirable aspect here as this course is about 
understanding how and why soil behaves as it does: a simple integration method is better 
even if lots of small steps are needed (and it turns out something like 3000 steps is plenty 
for a triaxial test, which is easy enough to implement in a spreadsheet).  This course thus 
depends on Euler integration.  

When you move from laboratory tests to stress-analysis of the ground in civil engineering 
works (‘boundary value problems’) an entirely different set of numerical procedures are 
needed – but, the derivation of the algorithms for finite element analysis is a specialist 
discipline and not something most geotechnical engineers do for themselves.  At the time 
of writing, modern CSSM methods are available as public-domain ‘user defined models’ 
for some of the standard geotechnical modelling software suites and with a trend for their 
direct incorporation as ‘standard’ models in the software.  However, do be careful as 
Modified Cam Clay is nearly universally offered by all software suites – and it is less than 
useless for most geotechnical engineering; you need Bounding Surface or NorSand 

variants based on  to get sensible representation of soil behaviour.  But that is getting 

ahead of ourselves, as the first task is to understand how and why CSSM works. 

  



Critical State Soil Mechanics  January, 2020 
 

Vancouver Geotechnical Society  Page 41 of 57 

Original Cam Clay 
 
Original Cam Clay (OCC; ‘Original’ to distinguish it from ‘Modified’) was the first 
complete model for soil strength and stiffness.   There were several preceding papers 
but these were in the nature of setting out the ideas and how they were developing; it 
is the Schofield & Wroth (1968) book that defines the framework and the OCC model.  
A feature of this book was its emphasis on linking void ratio to soil behavior, but this 
emphasis moved the OCC equations away from a standard plasticity view (which is 
actually simpler) and arguably is why people find OCC difficult to understand.  Here we 
encapsulate the key ideas of OCC and present them for use in a worksheet for drained 
and undrained triaxial compression.  We derive the model using both the ‘void ratio’ 
and ‘plasticity’ view, with the plasticity view being used for developing the worksheet.   
 

Key Ideas 

Some frameworks for understanding soil look to the experimental literature for their 
justification.  OCC is very different.   A much under-appreciated aspect of OCC is that it 
starts by adopting a few key ideas (assumptions) and then follows those ideas using formal 
mathematics; test data is only introduced at the end to see if the framework is relevant to 
engineering (‘validation’).  Of course, the ideas adopted were influenced by test data but 
the power in this approach is you can’t reject OCC because you don’t like the shape of the 
yield surface or the like.  There are actually only three key ideas in OCC: 

 The work dissipation assumption, which gives the stress-dilatancy rule 

 Normality, which is used to derive the yield surface from stress-dilatancy 

 All yield surfaces intersect the CSL, which gives the hardening rule 

We will now look at these ideas in turn, seeing how they match our understanding of soil 
behavior, before implementing OCC in a spreadsheet.  

OCC Flowrule  
The starting point is the idealization about how plastic work is dissipated, and that 
idealization follows directly from the two-component strength model of Taylor-Bishop that 
was discussed earlier.  If you turn back to Figure 3, the idea of dilation being a work 
transfer mechanism between the principal stress directions naturally leads to the idea that 
only the ‘constant volume’ friction dissipates work.  Since only plastic strains do work (the 
elastic ones just store energy), the obvious step is to modify the stress-dilatancy rule that 
was inspired by observing the particulate nature of soils so that the earlier Eqn [3] now 
becomes: 

Dp = M –          [20] 

…where M is taken as a constant and the superscript ‘p’ denotes plastic. If you look at 
Bishop’s work from seventy years ago (Figure 3), it is apparent that M evolves a bit at 
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small deviator stress but M being invariant with strain, and independent of void ratio, is a 
pretty reasonable starting point.  That is the first idealization of OCC. 

OCC Yield Surface 

The yield surface is derived from the normality condition.  Differentiating q =  p (which is 

the definition of  rearranged) gives: 

𝑑𝑞 = 𝑝 𝑑𝜂 +  𝜂 𝑑𝑝              [21] 

Now think back to high-school math.  If you have a line with gradient ‘x’ the gradient of a 
line perpendicular to that has gradient ‘-1/x’.   The term dq/dp is simply the tangent to the 
yield surface; the line perpendicular to that tangent to the yield surface is the plastic strain 
increment vector from the normality condition (see Figure 17).  Thus: 

ௗ௤

ௗ௣
= − 

ௗఌೡ
೛

ௗఌ೜
೛  =  −𝐷௣    or, re-arranged as   𝑑𝑞 = −𝐷௣ 𝑑𝑝   [22] 

On substituting the stress-dilatancy rule [20] into [22] we get: 

𝑑𝑞 = −(𝑀 − 𝜂) 𝑑𝑝        [23] 

And finally combining [23] and [21] to eliminate dq: 

𝑝 𝑑𝜂 +  𝜂 𝑑𝑝 = −(𝑀 − 𝜂) 𝑑𝑝  ⇒    𝑑𝜂 = −𝑀 𝑑𝑝/𝑝    [24] 

Equation [24] is a separated differential equation and solved simply by integrating each 
term, which gives: 

𝜂/𝑀 = − ln(𝑝) + 𝐶          [25] 

…where C is an integration constant.  This integration constant is chosen as the mean 

stress at the stress ratio  = M, which is the stress-ratio of the critical state, and thus: 

 C = 1 + ln(pc)          [26] 

So finally we get: 

𝜂 / 𝑀 = 1 − ln(𝑝/𝑝௖)         [27] 

The yield surface given by [27] is exactly that shown in Figure 17; the scaling stresses 
indicated on that figure are exactly pc and q =M pc.  And notice that we have not used any 
test data in deriving the yield surface; rather, OCC is based on plausible physical 
equations inspired by observations about the particulate nature of soil.    

 

OCC Hardening 
The really important contribution of OCC was not the derivation of yield surface shape 
from simple physical principles but rather the linking of yield surface size to the soils void 
ratio.  This provides the hardening rule and the linking is done via the CSL. 
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OCC idealizes the CSL using the widely-used, and quite reasonable, semi-log idealization:   

 𝑒௖ = Γ − 𝜆ଵ଴log (𝑝௖)        [6, repeated] 

…where 10 are soil properties that apply equally well to sands as clays (and despite 
the word ‘clay’ in OCC).  There are two ways of incorporating [6] into OCC, which we will 
name the ‘state view’ and the ‘plasticity view’. 

 

Hardening via State  

The Schofield & Wroth approach, widely shared by other workers at Cambridge, UK, was 
to emphasize the role of void ratio in soil behavior; in such a world-view the kernel 
framework is a void ratio versus log(p) plot, commonly called a ‘state diagram’ as it is a 
picture of where the soil sits in its void ratio space.  Strictly, such state diagrams ought to 
include emin but most workers just show the normal compression locus as this framework 
is much conditioned by experience with the oedometer test.   Thus, [6] was rearranged, 
with a change from base-10 to natural logs (as appear in [27]) to give: 

ln(𝑝௖) = (Γ − 𝑒௖) /𝜆        [28] 

However, there is a further step as OCC includes volumetric elasticity which means that e 
does not generally correspond to ec – you have to allows for elastic void ratio change 
between the current stress p and pc; OCC has the idealization in terms of soil state that: 

𝑒௖ = 𝑒 +  Δ𝑒௘         [29] 

… where e is the current void ratio of the soil at the current stress p.  The elastic behaviour 
is idealized from unload-reload behaviour seen in oedometer tests by introducing a new 

soil property  (which is the oedometer property Cs but expressed in terms of natural logs) 

such that: 

Δ𝑒 =  − 𝜅 ln (𝑝௖ / 𝑝)      during unloading or reloading     [30] 

…where the ‘‘ sign arises because void ratio reduction is positive strain.  Substituting [30] 

in [29] and the result in [28] gives: 

(𝜆 − 𝜅) ln(𝑝௖) =   Γ − 𝑒 −  𝜅 ln (𝑝 )      [31] 

Or on pulling everything together as a single equation showing how yielding and strength 
evolution depends on void ratio: 

𝜂 / 𝑀 = 1 − ln(𝑝) + (  Γ − 𝑒 −  𝜅 ln (𝑝 )) / (𝜆 − 𝜅)    [32] 

 

Hardening via Plastic Strain Increment 

Equation [32] directly links soil strength and stiffness to void ratio, but it is hardly intuitive.  
Worse, it does not look like a stiffness so it cannot be used in the finite element method in 
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this form.  And, it obscures the role of plastic strain – a role that is the kernel of the theory 
on which OCC is based.  So, let us start with plastic strain increments. 

OCC is inspired by an idealized oedometer test, so let us think like that and consider void 
ratio change as stress changes, Figure 22.   Starting at stress state pA and with matching 
deviator stress (qA = M pA) so the stress state lies on the CSL, let us impose sufficient 
deviator stress as we increase p such that the soil consolidates along the CSL to stress 
state pB.  The confining stress is then reduced, back to pA, along with reducing the deviator 
stress, such that the soil unloads (swells) – some of the ‘normal’ consolidation is recovered 
during this unloading.  If we view this behaviour incrementally the plastic (irrecoverable) 
void ratio decrease for loading along the CSL is: 

𝑑𝑒௣ = −(𝜆 − 𝜅)  𝑑𝑝௖/𝑝௖       [33] 

 

 

Figure 22:  Loading and unloading in state space illustrating plastic void ratio change 

 

We want to work with incremental strains rather than void ratio change, so noting that  

de = (1+e) dv we substitute this in [33] and rewrite as: 

(1 + 𝑒) 𝑑𝜀௩
௣

= (𝜆 − 𝜅)  𝑑𝑝௖/𝑝௖       [34] 

There is now one further step.  Recall Casagrande’s original discovery of the critical state 

was about large-strain strength in shear (see Figure 10).  Thus, we should work with dq 

rather than dv – which is easy enough to since by definition dv
p = Dp dq

p.   So, using this 
identity we rearrange [34] as:  

ௗ௣೎

௣೎
=

ଵା௘

ఒି఑
 𝐷௣𝑑𝜀௤

௣
        [35] 

Equation [35] operates directly on the yield surface (equation [27]) to change its size in 
response to plastic deviatoric strain – easy to appreciate, and an elegant implementation 
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of the Theory of Plasticity.  This elegance has come at the cost that the direct linking to 
void ratio is slightly lost, although that linking survives in setting the initial value of pc before 
applying plastic strain; equation [31] rearranged gives us the starting point: 

 ln(𝑝௖) =  ( Γ − 𝑒 −  𝜅 ln (𝑝 )) (𝜆 − 𝜅)⁄      [31a] 

We also gain further insight as the parameter grouping: 

𝐻 =
ଵା௘

ఒି఑
          [36] 

…can now be seen as a dimensionless plastic modulus (= soil property) analogous to the 
elastic shear rigidity Ir (= G/p).   The slope of the CSL is not just about the critical state in 
itself, but rather reflects the overall stiffness of the soil in distortion. 

Computing Triaxial compression of OCC 
All work-hardening plastic models change the size of the yield surface in response to 
plastic strains (that is what their hardening law does), except when we get to the critical 
state where everything continues indefinitely at constant conditions. So what happened to 
our stresses as the yield surface changes size? The consistency condition is that the 
stress state must remain on the yield surface during yielding; this is true of every plasticity 
model, not just CSSM.   In essence, the yield surface drags the stress state with it as the 
yield surface changes size.  Practically, the consistency condition gives us a further 
equation and produces the slightly paradoxical result that while we discuss yield surface 
shapes when developing the theory such yield surfaces are rarely used.  Rather, we take 
the differential of the yield surface to work out where an increment of plastic yield has 
taken us; working out the corresponding stress change from the consistency condition is 
a key step in implementing any constitutive model. 

In the case of unknown stress paths, such as general analysis with the finite element 
method, the consistency condition is used to drive the solution algorithm.  In the case of 
laboratory tests, where the equipment controls the stress or strain path, the consistency 
condition is used directly to compute the stress-strain curve.   For the ‘bullet shaped’ yield 
surfaces of OCC, differentiating the yield surface (equation [27]) gives:  

𝑑𝜂 = 𝑀 ቀ
ௗ௣೎

௣೎
−

ௗ௣

௣
ቁ        [37] 

…where the first term in the () on the right-hand side is given by the hardening law 
(equation [35] above).  The second term in the () is test-specific and is what you have to 
work out; the steps to do this are as follows.  

Undrained Loading 

The undrained condition is v=0 (= constant volume).  Using the elastic-plastic strain 

decomposition, this condition can be expressed in terms of incremental volumetric strains, 
broken down into their elastic and plastic components, as: 

𝑑𝜀௩
௘ = −𝑑𝜀௩

௣         [38] 
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On substituting the elastic soil model in [38] we immediately get the change in mean 
stress: 

𝑑𝑝′ = 𝐾 𝑑𝜀௩
௘ = −𝐾 𝑑𝜀௩

௣       [39] 

You can see from the above equation [39] why elasticity is so important to undrained 
loading even though you are using a plasticity model – the excess pore pressure simply 
reflects the balance between elastic and plastic processes, with each process being 
equally important.   

Most importantly, notice that Poisson’s Ratio does not appear in [39] and in particular we 

never, ever, use  = 0.5 to get an undrained response; rather, everything follows exactly 

from the elastic-plastic strain decomposition as expressed in [38].  Further, in the case of 
OCC, the concept of Poisson’s Ratio does not even exist – elasticity is only represented 
by the oedometer unload-reload idealization of the “kappa” model with: 

𝐾 =  (1 + 𝑒) 𝑝 𝜅⁄         [40] 

Computing the new stress state after an increment of plastic strain is now simple.  The 
above undrained condition gives us the change in mean stress which we simply substitute 

into the consistency condition [37] (and including the plastic hardening) to get d.  We 
then apply Euler integration to get: 

NEW = OLD + d        [41] 

 …and then on to the next step after adding in elastic shear strain. 

 

Drained Loading  

In the case of drained triaxial tests the slope of the load path q/p = 3 (assuming that 

you are using standard equipment and not trying to get a particular stress path...) because 

of the arrangement of the test.   We use this loading direction by first differentiating : 

 = q/p’   𝑑𝜂 =  
௣ ௗ௤ି௤ ௗ௣

௣ ௣
=  

ௗ௣

௣
ቀ

ௗ௤

ௗ௣
−  𝜂ቁ       

=>   
ௗ௣

௣
= 𝑑𝜂 /(3 −  𝜂)       [42] 

Substituting the consistency condition [37] in [42] to eliminate d gives: 

ௗ௣

௣
=  𝑀

ௗ௣೎

௣೎
(3 + 𝑀 −  𝜂)ൗ        [43] 

…which now allows is to advance the solution using [41] just as in the case of undrained 
loading.  We just modify one column in the undrained spreadsheet.   
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Summary of OCC equations 
 

Yield surface 

… or as  

Consistency 

𝜂 = 𝑀 ൤1 −  𝑙𝑛 ൬
𝑝௖

𝑝
൰൨ 

Δ𝜂 = 𝑀 ൬
Δ𝑝௖

𝑝௖
−

Δ𝑝

𝑝
൰ 

Flowrule 𝐷௣ = 𝑀 −  𝜂 

Hardening ∆𝑝௖ = 𝑝௖ 𝐻 𝐷௣ ∆𝜀௤
௣

 …where   𝐻 =  
ଵା௘

ఒି఑
   

Elasticity 𝐾 =  (1 + 𝑒) 𝑝 𝜅⁄         G = ‘a very large number’ 
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TUTORIAL 2 – Implement OCC for a CIU test and verify 
Use the supplied template OCC_CIU_Ex2.xls to calculate the undrained triaxial behaviour 
of OCC.  This template is configured to model a CIU test from q=0. 

Even though OCC does not include any concept of elastic shear modulus, add this in as 
you develop the xls as it will be needed later as the xls is evolved to more realistic 
representation of soil behaviour in later tutorials; just set Gmax = 2000 MPa for now so 
computed elastic strains are negligible in OCC consistent with its assumptions. 

Verify your numerical implementation by comparison to the closed-form solution given by 
Schofield & Wroth (supplied in the template and plots as the ‘red dots’).  The closed-form 
solution uses the same properties as your numerical implementation, so the two soultions 
change together if you choose different soil properties. 

Investigate the dependence of numerical accuracy on numerical step-size.   What would 
be a reasonable ‘rule of thumb’ for the needed step-size ?  

 

TUTORIAL 3 – Implement OCC for a CID test and validate  

Exercise 3a 

Save a copy of the Exercise 2 xls with a new name OCC_CID_Ex3a.xls 

Delete the ‘red dots’ from the plots (i.e. the closed-form solution) 

Add and align a new plot beneath the q - a plot: a - v 

Modify your undrained OCC worksheet to compute drained triaxial behaviour 

Calibrate drained OCC to the supplied data in the template CID-682; what values of M and 

10 give the best-fit ?  What do you think of the fit ? 

 

Exercise 3b 

Save a copy of the Exercise 3a with a new name OCC_CID_Ex3b.xls 

Change the plotted data to test CID-667 

On the ‘properties’ sheet, honour the tests reported initial void ratio 

Why does OCC predict very large strengths ?  
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NorSand 
 
Original Cam Clay is mathematically elegant but only matches reality for loose soils. 
This begs the question: what has been missed ?  It turns out, as will have been 
discovered in the tutorial exercises, that the assumption of yield surfaces always 
intersecting the CSL is generally wrong; rather, the CSL is the end-point and yield 
surfaces evolve with distortional strain to that end point.  Thus, while many aspects of 
OCC can be retained its hardening law must be generalized.  That generalization is 
NorSand (NS) and the generalization uses the state parameter.  NS was derived out of 
experience with large-scale hydraulic filling in the 1980’s and has evolved somewhat 
since first published in 1993.   Partly, this evolution is because there are choices within 
an otherwise derivable framework.  Partly, this evolution is because additional 
features have been identified that both add detail while simplifying NS.  The 
presentation here of NS is that as of late 2018 although limited to triaxial compression 
for this course; the emphasis for the course is illustrating how little needs changing in 
OCC to get to NS that then works well for all soils.  
 

Key Ideas 
The ideas of OCC continue into NorSand (NS) but are further formalized as two axioms: 

AXIOM 1: A unique CSL exists.  This need not be the familiar semi-log form, with 
whatever equation fits the soil test data being acceptable (ie the CSL shape is viewed 
as a modelling ‘detail’ for any particular soil). 

AXIOM 2: Soil state is characterized by the state parameter  with the axiom being 

that  reduces with increasing deviatoric strain; this is simply a mathematical 

statement of Casagrande’s canonical plot (Figure 5).   

With these axioms established, NS further adopts: 

 The Taylor-Bishop work dissipation idealization, but in the modified form 
suggested by Nova that best-fits test data; this admits the possibility of plastic work 
in volumetric strains, not just deviatoric strains. 

 Normality, which is used to derive the yield surface from stress-dilatancy; this is 
exactly the same as used in OCC. 

 A hardening limit from the state parameter principle (equation [9], see Figure 14) 

 A hardening rule derived from Axiom 2 (as opposed to just assuming the CSL is 
the hardening rule) 

We will now discuss these ideas in turn, seeing how they change our understanding from 
OCC, before verifying that NS captures everything from very dilating dense soils through 
to static liquefaction of loose soil.  Perhaps the kernel idea is that, while OCC only deals 

with plastic strain increments, NS requires continued reference to an evolving ; so, your 

worksheet will need an extra column for the state parameter . 
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NS Flowrule  

The starting point is the idealization about how plastic work is dissipated, and that 
idealization follows directly from the two-component strength model of Taylor-Bishop that 
was discussed earlier.  However, test data is usually better fitted by Nova’s adaption of 
the idealization (see Figure 7): 

𝜂௠௔௫ = 𝑀௧௖ − (1 − 𝑁) 𝐷௠௜௡      [4 repeated] 

This is a ‘strength’ equation and not a stress-dilatancy rule; Mtc and N are experimentally 
determined properties that, as far as established by present testing, do not vary with void 
ratio of confining stress.   The step made with NS is based on the ideas of Dafalias and 
co-workers and which is that, while it has been known for at least 50 years that M evolves 
(see Figure 3), that evolution could reasonably be taken to depend on the state parameter.  
So, NS uses this idea with the stress-dilatancy rule: 

𝐷௣ = 𝑀௜ − 𝜂         [44] 

…where Mi is now something that evolves; in many ways this goes right back to the original 
views of Taylor-Bishop about the work dissipation function not being a fixed quantity.  The 
evolution is derived by noting that we still want to honour [4] so that [44] must give the 
same as [4] at peak strength; so: 

𝜂௠௔௫ = 𝑀௧௖ − (1 − 𝑁) 𝐷௠௜௡ =  𝑀௜ −  𝐷௣     [45] 

At peak strength dp=0 and dq =0 for all loading paths; so Dmin = Dp as elastic strain 
increments vanish at peak strength.   Rearranging [45] and adding in equation [9] leads 
to: 

𝑀௜ = 𝑀௧௖ + 𝑁 𝐷௠௜௡ =  𝑀௧௖ − 𝑁 𝜒 |𝜓|      [46] 

Equation [45] is straightforward for dense soils with <0 as it simply fits widely measured 
trends in soil behaviour.  It is more troublesome for loose soils as the data is unclear on 
the soil behaviour in this situation.  Logically, there are two choices: i) view Mi as something 
that only arises for dense soils and thus revert to Mi=Mtc for loose soil; or, ii) make Mi 

symmetric around Mtc and which then adds the ‘modulus’ function on .  At present the 

second option appears to fit test data on loose soils better.  But, certainly Mi < Mtc as the 
issue is the proportion of plastic work not being dissipated by plastic distortional strain.    

This topic of mobilized friction ratio is something requiring an open mind on your part and 
something to investigate in the soils that you test.  There is no ‘right’ or ‘wrong’ here, as 
yet, and that is one reason that there have been variants within NS.  But do document the 
idealization you use when assessing your data. 

NS Yield Surface 
The yield surface is derived from the normality condition and corresponds to exactly that 
as done for OCC.  But, the NS yield surface, illustrated on Figure 23, differs from that of 
OCC in two important ways even thought is has the same basic shape. 
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Figure 23:  Example of NS yield surface 

 

First, while the yield surface has the ‘bullet like’ shape of OCC, because the yield surface 
does not intersect the CSL the scaling parameter is now something different: the image 
stress pim.  At this image condition Dp = 0 but this need not be the end point, and usually 

is not, since the second necessary condition of the critical state that dDp/dq= 0 is generally 

not met; it is a bit like a ghostly appearance of the critical state but not quite – hence the 
name ‘image’.  Thus, the basic equation for the NS yield surface looks the same as that 
of OCC except that we have switched out pc for pim: 

 𝜂 / 𝑀௜ = 1 − ln(𝑝/𝑝௜௠)        [46] 

This switch from pc to pim may appear to be just a change of notation but it is actually 
fundamental.   In OCC there are a very limited range of plastic behaviours with dense soil 
being viewed as over-consolidated (and easily massively so).  In NS, any combination of 
e, p, q can be on a yield surface – this means soil can yield anywhere in its accessible 
states, exactly as seen when you test soil.  Of course, you can unload from a yield surface 
too so over-consolidation also exists – see Figure 23. 

Second, the NS yield surface differs from that of OCC by having an inner cap (the vertical 
line shown on Figure 23).   Recall that state-dilatancy sets a direct relation between the 

soil’s  and its limiting dilatancy Dmin (equation [9]).  Since we have normality, this means 

we can only go so far around a yield surface before we violate the dilatancy limit – and 
which can also be viewed as limiting how far a yield surface can expand at any mean 
stress.   Thus, we must introduce a hardening limit pmx for pim to control how much dilatancy 
develops.   
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The hardening limit is derived by rearranging the NS yield surface equation to get: 

𝑀௜  ln(𝑝/𝑝௠௫) = 𝑀௜ − 𝜂        

 … and then substituting the limiting dilation: 

 𝑀௜  ln ቀ
௣

௣೘ೣ
ቁ = 𝐷௠௜௡ =  Χ 𝜓        

… and then inverting to get: 

 𝑝௠௫ = 𝑝 exp (−Χ 𝜓/𝑀௜ )        [47] 

NS Hardening 

The hardening rule in NS comes directly from Axiom 2 of CSSM: everything moves to the 
CSL with distortional strain.  Axiom 2 requires that the ‘image condition’ (pim) on the NS 
yield surface moves onto the CSL with deviatoric strain.  In NS this is done as ‘double 
hardening’ by first moving pim to its limiting condition pmx and then tracking pmx as that 
evolves to pc.  The second aspect of hardening develops naturally because pmx is based 
on state-dilatancy (equation [9]).  So, it is sufficient to invoke: 

𝑑𝑝௜௠ = 𝐻 (𝑝௠௫ − 𝑝௜௠) 𝑑𝜀௤
௣       [48] 

…as the NS hardening law where H is the hardening modulus.  Because the essence of 
NS is decoupling of the yield surface from the CSL, the slope of the CSL no longer directly 

acts as the plastic modulus; generally, an effect of on the hardening modulus is also 
found.  Further, many soils show an effect of softening as the deviator stress ratio 
increases.  Accordingly, the hardening modulus used in NS is: 

𝐻 = ൫𝐻଴ − 𝐻ట 𝜓൯ 𝑝 / 𝑝௜௠        [49] 

…where H0, H are experimentally determined soil properties.  These are the only 
properties in NS that are specific to NS; determination of their values will be discussed 
shortly after first describing how to compute NS behaviour for triaxial tests.  But, aspects 
of plastic hardening derived for OCC continue across to NS with an approximation of 
equation [36] often being a reasonable first-estimate for H0:  

𝐻଴ ≈ 2 / 𝜆    ≈ 4 / 𝜆ଵ଴           
 [50] 

Computing Triaxial compression of NS 

Computing drained and undrained triaxial compression behaviour of NS is near identical 
to the calculations used for OCC other than to replace dpc/pc of OCC with dpim/pim for NS.  
For learning purposes that substitution will be sufficient; for accuracy, an additional term 
is needed in the consistency condition because Mi evolves: 

  𝑑𝜂 = 𝑀௜ ቀ
ௗ௣೎

௣೎
−

ௗ௣

௣
ቁ + 𝜂

ௗெ೔

ெ೔
       [51] 
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Iterative Modelling for Soil Properties 

The essence of all critical state soil mechanics is that soil properties do not change with 
void ratio or stress level (this may need a little modification, as there is some evidence for 
an effect of void ratio on Mtc with very loose soils).   Consistent with this, the properties 
used in OCC and NS are simply obtained by plotting data from triaxial compression tests 
with one exception: plastic hardening in NS.  There is also the idea that the elastic shear 
modulus is so sensitive to the details of particle to particle contacts that Gmax might be 
reasonably considered as a ‘state variable’ (which can change from test to test and vary 
from place to place insitu) rather than as a ‘property’.  These aspects are easily 
investigated by iterative forward modelling (IFM).  

In IFM we estimate the properties of interest and them compute the behaviour for the test 
in question.  We then compare the computed behaviour with that measured, then revising 
our estimates based on the mismatch between computed and measured.  The process is 
then repeated (“iterated”) as many times as needed to achieve good fits to data. 

The beauty of IFM is that it optimizes the fit of theory to reality, and while perhaps needing 
a little more work that determining a property by plotting some data a particular way, it is 
actually very easy to do using a laptop computer.  Indeed, many people find IFM slightly 
‘sucking them into’ the data and continue the modelling looking for ever more refinement; 
it is actually as involving as a video game. 

IFM is used to determine H0, Hy for NS.   However, although this could be done in a 
worksheet environment, it needs professional programming approach as we want to 
include things like over-consolidation (very tedious in a worksheet) and the ability to easily 
jump between the various tests on a soil (almost impossible with worksheets).  Thus, the 
open-code Excel worksheet provided and which you will be guided through as part of 
Tutorial 5. 

Physical Limits on State and Hardening 

Although it may seem possible for soil to be as loose as you like with the state parameter 

approach, there is a physical limit – you cannot have max <0; this criterion can be put in 

the stress-dilatancy rule to give an upper limit for soil state consistent with its properties: 

 < Mtc / ( (1+N))        [52] 

Likewise, the plastic hardening modulus must be sufficient to the soil cannot ‘consolidate’ 
away from the CSL under drained isotropic compression while also ensuring consolidation 
to at least parallel the CSL in the loosest possible state .  Two limitations on the hardening 
properties follow from this ‘physical reasonableness’ requirement: 

H0 > 1 /          [53a] 

H <  (H0 -1 /(1+N) / Mtc       [53b] 

These limits are indicated adjacent to the relevant inputs in the modelling environment. 
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Summary of NS equations 
 
For triaxial compression (see Jefferies & Been, 2016, for generalization to 3D) 

Yield surface 

… or as  

Consistency 

𝜂 = 𝑀௜  ൤1 −  𝑙𝑛 ൬
𝑝௜௠

𝑝
൰൨ 

Δ𝜂 = 𝑀௜ ൬
Δ𝑝௜௠

𝑝௜௠
−

Δ𝑝

𝑝
൰ +  𝜂

𝑑𝑀௜

𝑀௜
 

Flowrule 

𝐷௣ = 𝑀௜ −  𝜂 

…where:   𝑀௜ = 𝑀௖                   …for simple version 

               𝑀௜ = 𝑀௖  − |𝑁 Χ ψ|  …for accurate version 

Hardening 

∆𝑝௜௠ =  𝐻 (𝑝௠௫ − 𝑝௜௠) ∆𝜀௤
௣

  

…where   𝑝௠௫ =  𝑝 exp(−Χ 𝜓 𝑀௜)⁄    

Elasticity 𝐾 = 2𝐺(1 + 𝜈)/ (3 − 6𝜈)        …where G,   are properties 
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TUTORIAL 4 – Change OCC into NS and validate 
Take the worksheet of Exercise 3b with the dense sand test Erksak CID-667 and convert 
the worksheet from OCC to NS by adding two columns to: 

Compute the state parameter  

Compute the hardening limit Pmx 

And then modifying the worksheet to: 

  Use variable Mi as opposed to constant M  

 Change the hardening law from that of OCC to NSS 

            Use H as a simple constant from the inputs 

 

What value for H gives the best-fit to this test on dense sand ? 

Why is the computed stress-path not perfect ? 

 

TUTORIAL 5 – Use NS in the VBA modelling environment 
Open NorTxl_Nerlerk.xlsm (this is the xls holding the Nerlerk sand data used in the first 
tutorial and for which you have determined its properties).    

Move to ‘param & plots’ worksheet and learn how to view the different tests by using the 
‘Plot Data’ button. 

Check that the NorSand properties are set to those you calibrated. 

Now systematically model the drained tests, varying H as needed, to best-fit all tests; 
record your simulation parameters as you do so.   Plot your results to estimate the plastic 
hardening modulus for Nerlerk sand.  What is this hardening function ?  How sensitive is 
this function to your eyeballed fit ?  Should one test be tried a little stiffer, and if so does 
that improve the fit in your view ?   

With this hardening function determined, now model an undrained test using the measured 
Gmax (choose any test and feel free to model a few more).  Next, explore the effect of 
changing Gmax on the computed stress path.  Now optimize the modelled fit to all undrained 
tests the H-trend from drained tests and using Gmax as a ‘free’ parameter that is adjusted 
to best-fit the computed stress-path to each undrained test in turn.  Compare your 
optimized Gmax with the expected value based on the geophysical data; can you suggest 
a ‘rule of thumb’ for Nerlerk sand elasticity ? 
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Appendix A: Derivation of state-dilatancy  
This appendix considers the mathematics behind the state parameter to derive why 
maximum dilation, and thus strength, should scale linearly with the state parameter.   And, 
thus to introduce the notion that the state parameter is more than “just another correlation” 
of soil mechanics. 

The early tests by Casagrande identified that sand dilated or contracted as it was sheared, 
depending on the initial density, to reach a common and unique void ratio at large strain – 
the critical state for that sand.  In modern constitutive developments we take this behaviour 
as two axioms (= fundamental truths that we accept) and construct the theory around them 
in a mathematically consistent manner.  Axiom 1 is that the CSL is unique; Axiom 2 is that 
soil moves to the CSL with distortional strain.   

Axiom 2 can be given a simple, and elegant, form by defining a state parameter as the 
void ratio offset from the soil’s critical state at the current mean effective stress (ec): 

𝜓 = 𝑒 − 𝑒௖        [A.1] 

…and which then leads to Axiom 2 being stated as: 

𝜓 → 0  𝑎𝑠   𝜀௤ → ∞       [A.2] 

 … where q is the deviatoric strain that generalizes to arbitrary 3D loadings as suggested 
by Resende & Martin (1985).   Nothing spurious is introduced by formalizing Casagrande’s 
canonical figure into an equation, and further the equation is a mathematically sufficient.    

When faced with a physical process that involves moving from state ‘A’ to state ‘B’, a 
reasonable first estimate is to treat the situation as a rate process so that the further you 
are from the end state the faster you move.  Radioactive decay is an example of this.   
Accordingly, we take [A.2] in a slightly more restrictive form by introducing a first-order 
rate equation analogous to those found in other branches of physics: 

𝑑𝜓 = −𝜒′ 𝜓 𝑑𝜀௤        [A.3] 

… where 𝜒′ is a coefficient of proportionality.   Notice that the negative sign forces a 
decrease in deviation, whatever the initial conditions, as deviatoric strain accumulates – 
thus exactly conforming to [A.2].  Strictly, we could start with ‘higher order’ terms and 
simplify to a first approximation.  We invoke [A.3] as a fundamental postulate for deriving 
critical state soil mechanics. 

Taking the differential of [A.1] (simple, as it is a linear equation) and substituting in [A.3]: 

𝑑𝑒 − 𝑑𝑒௖ = −𝜒′ 𝜓 𝑑𝜀௤          [A.4] 

On dividing [A.4] through by the current specific volume and rearranging: 

ௗ௘

ଵା௘
=

ௗ௘೎

ଵା௘
− 

ఞᇱ ట ௗఌ೜

ଵା௘
        [A.5] 
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The left-hand term of [A.5] is the volumetric strain increment, so [A.5] re-writes (allowing 
for the compression positive convention of soil mechanics) as: 

−𝑑𝜀௩ =  
ௗ௘

ଵା௘
 =

ௗ௘೎

ଵା௘
  −

ఞᇱ ట  ௗఌ೜

ଵା௘
        [A.6] 

…or on dividing through by the deviatoric strain: 

𝐷 =  
ௗఌೡ

ௗఌ೜
=  

ఞᇱ ట 

ଵା௘
 −

ଵ

ଵା௘
 

ௗ௘೎

ௗఌ೜
          [A.7] 

…where D is the dilatancy of the soil.  We can proceed using any admissible form of CSL, 
but a simple result is obtained if we adopt a semi-log CSL (which is at least a good 
approximation in most cases, and more complicated CSL can be reduced to this locally): 

𝑒௖ = Γ − 𝜆 ln 𝑝    =>   𝑑𝑒௖ = −𝜆
ௗ௣

௣
       [A.8] 

Substituting [A.8] in [A.7] gives: 

𝐷 =  
ఞᇱ ట 

ଵା௘
+

ఒ

ଵା௘
 

ଵ

௣
 

ௗ௣

ௗఌ೜
         [A.9] 

Now in a drained triaxial test at peak strength dp/dq=0 as the stress path reverses  
direction for dilating soil.  This peak strength corresponds to ‘maximum’ dilation rate under 
current stress-dilatancy theories and which is actually Dmin because of the compression 
positive convention.   Further, because the stress state is stationary at qmax there are no 
elastic strain increments.  Thus, our base expectation, derived from Axiom 2 by introducing 
a slightly more restrictive postulate of first-order rate theory, is that:  

𝐷௠௜௡ =  𝐷௠௜௡
௉ =  

ఞᇱ ట 

ଵା௘
          [A.10] 

… in drained triaxial compression.  Such a test then becomes a convenient and simple 
method to determine the coefficient of proportionality in the rate equation – just plot max 
dilation versus the state parameter at that dilation, normalized by specific volume, at that 
maximum dilation and fit a linear trend to the data that goes through the origin. 

Historically, the ‘1+e’ term was omitted from the definition of the rate coefficient in equation 
[A.10], which is unfortunate in principle.   However, scatter in soil behaviour data is barely 

reduced (if at all) if the data is plotted against /(1+e) so, for practical, use it seems 

sufficient to regard ‘1+e’  as “bundled in” to the definition of the rate coefficient – thus the 
simplification: 

𝐷௠௜௡ =  𝐷௠௜௡
௉ =  Χ 𝜓          [A.11] 

 

 


