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Professor David Muir Wood 
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David Muir Wood read Mechanical Sciences at Cambridge University, graduating in 
1970. He received his PhD there in 1974 for research on the true triaxial behaviour of 
clays, followed by a lectureship at Cambridge from 1975-1987. 

He held the Cormack Chair of Civil Engineering at Glasgow University until 1995 when 
he was elected to the Chair of Civil Engineering at Bristol University, becoming Dean of 
the Faculty of Engineering in 2003. He was Professor of Geotechnical Engineering at 
Dundee University from 2009-2014. He is now Affilierad professor i geoteknik at 
Chalmers University, Göteborg, Sweden. He was elected a Fellow of the Royal Academy 
of Engineering in 1998 and Fellow of the Royal Society of Edinburgh in 2012. 

David Muir Wood's current research explores themes concerned with the particle 
continuum duality of soils. He is developing constitutive models for soils with breakable 
particles, for soils whose finer particles are being transported away by internal flow of 
water, and for soils whose mechanical response is improved by the addition of short 
flexible fibres. The ongoing challenge for each of these is to obtain appropriate 
experimental data to support the modelling hypotheses. 

He has written four books: Soil behaviour and critical state soil mechanics (1990), 
Geotechnical modelling (2004), Soil mechanics: a one-dimensional introduction (2009), 
Civil engineering: a very short introduction (2012). 

CONTENT: 

 

 

 

 

 
Before embarking on complex numerical modelling or physical modelling, Step 0 is ‘to 
write down the answer’. If you have no idea what answer to expect then you will not 
recognise when the modelling has gone awry. Step 0 estimates are best supported by ‘back 
of the envelope’ calculations which may be based on simplified modelling which manages 
to include the important mechanisms of response. ‘System’ as opposed to ‘element’ 
treatment is often possible. 

One example is the use of parabolic isochrones for analysis of consolidation. Such a 
system model can be used to estimate the progress of consolidation around an 
embankment on soft clay with vertical drains. 

The volume shrinkage that occurs in cement/soil mixtures as the cement hydrates leads to 
pore pressure changes. Careful consideration of the processes involved leads to a rather 
simple governing equation for which an analytical solution is available. The problem of an 
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undersea pipeline sliding on a consolidating interface is also amenable to rather simple 
treatment. 

These are examples in which formulating the problem in terms of dimensionless quantities 
produces results which may be approximate but are capable of rather general application - 
particularly in support of Step 0 estimates. 

DETAILS 
 

Executive Inn, 4201 Lougheed Highway, Burnaby, BC  V5C 3Y6 (Phone: 604-298-2010) 
Social Hour:  5:30 to 6:30 pm (drinks available at the hotel bar) 
Technical Presentation:  6:30 to 7:30 pm 
Dinner:  7:45 pm ($30 will be charged for dinner) 
If you would like to stay for dinner please RSVP to ali.amini@shaw.ca or at the door with 
Robyn Barnett. 
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Less is more

CUP (1990)                           Spon (2004)                     CUP (2009)
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Less is more

observation

prediction
reflection

Soil modelling: Step 0: before you switch on the
computer...

...write down the answer!

always start with prediction

if subsequent observation unexpected...

reflection required to improve prediction
(understanding)
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Less is more

closed-form analyses rare (elastic systems)

numerical analysis possibly heavy-handed way of
seeking geotechnical insight

macroelement: intermediate technique

rapid estimates; plausible representation of
mechanisms; dimensionless (normalised) results -
immediately transferable
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Parabolic isochrones
sandsand

sand

clay

clay

rock

LL

L

a. b.

timetime

time

excess pore 

pressure

excess pore 

pressure

clay

analysis of consolidation

boundary conditions applied at system (not element)
level

assume parabolic mode shape at all times
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Parabolic isochrones
sandsand

sand

clay

clay

rock

LL

L

a. b.

timetime

time

excess pore 

pressure

excess pore 

pressure

clay

rate of volume compression through increase of
effective stress

balances rate of outflow of water at drainage boundary

system analysis
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Parabolic isochrones

L/2

L/2

B

area = 2BL/3

area = BL/3

geometry of parabola

area = 2/3 enclosing rectangle (transfer of pore
pressure to effective stress)

exit gradient = 2× diagonal of enclosing rectangle
(seepage velocity)
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Parabolic isochrones: first response regime
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Parabolic isochrones
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Parabolic isochrones
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embankment on soft clay

soft clay (cu)

strength gain?

embankment h ?

H

typical 

isochrone

what is safe height for rapid construction of
embankment?

can we estimate benefit of vertical drains?
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embankment on soft clay
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solution

exponent n in mode shape (=2 for parabola) essentially
arbitrary - best fit 1-D: n ∼ 1.5

consolidation with radial flow: n ∼ 6.5 (rm/ro = 10.5)
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embankment on soft clay
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embankment on soft clay

0 500 1000
0.0

0.5

1.0

construction time (weeks)

maximum pore 

pressure ratio

degree of consolidation

long construction time for significant consolidation

time < 40 weeks, assumption of stage 2 pore pressure
breaks down

loading varies with position - strength gain varies with
position
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embankment on soft clay

soft clay (cu)

δcu = α δσ'v

embankment h ?

H

typical 

isochrone

flow 

path

vertical 

drains

array of drains reduces flow path

consolidation essentially uniform over each vertical
section

strength gain from local degree of consolidation and
local vertical stress increment
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embankment on soft clay

2s

rm=1.05s
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solution

array of vertical drains - spacing - radius of influence

consolidation with radial flow: n ∼ 6.5 (rm/ro = 10.5)
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embankment on soft clay
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complete
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embankment on soft clay
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embankment on soft clay
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embankment on soft clay
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embankment on soft clay

application of ‘power-law’ isochrones (generalisation of
parabolic isochrones)

dimensionless results - wider applicability

system response - simple equations
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Consolidation of cement paste

effective stress development in cement-paste mine
backfill, bored piles

cement hydration leads to volume change

complicated problem - many soil properties

develop governing dimensionless equation - general
solution - one controlling property (non-dimensional
group of properties)

exact solutions for one-dimensional and axisymmetric
problems; finite difference solutions - finite element
calculations - parabolic isochrone approximation
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Volume changes in hydrating element

water

unhydrated cement

hydration product

aggregate

1.  initial state

2.  volume of hydration products increases; : volume of cement and 

water decreases

3.  volume change resulting from seepage flow

4.  pore pressure change: change in effective stress;  compression of 

solid skeleton, compression of pore water

1.                    2.                    3.                      4. seepage
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Governing equation
finite layer thickness H

dimensionless coordinate x̃ = x/H

coefficient of consolidation cv = kE∗/ρwg

dimensionless time t̃ = cvt/H
2

dimensionless rate of hydration κ∗ = κH2/cv

dimensionless pore pressure ũ = u/E∗ανco

ανco is eventual volume loss through hydration

κ∗ exp(−κ∗t̃)−
∂2ũ

∂x̃2
+

∂ũ

∂t̃
= 0

diffusion equation with time-dependent source
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Finite layer with one impermeable boundary

x
0 H

zero pore 

pressure
zero flow

boundary conditions:
dũ/dx̃ = 0 at x̃ = 0
ũ = 0 at x̃ = 1
ũ → 0 as t̃ → ∞

at time t̃ = 0, ũ = 0 for 0 < x̃ < 1

– p. 5/15



Finite layer with one impermeable boundary

x
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zero flow
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×
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[
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(Carslaw and Jaeger)
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One-dimensional analysis
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One-dimensional analysis
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Analytical and ABAQUS solution
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Finite difference solution

central difference formulation in space and time
tridiagonal matrix - simple solution by forward and reverse
substitution (no matrix inversion)
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Analytical and finite difference solution

analysis

finite difference
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One-dimensional analysis: parabolic isochrones
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One-dimensional analysis: parabolic isochrones
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One-dimensional analysis
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One-dimensional analysis: parabolic isochrones
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Finite difference: more complex problems

r

0

R

zero pore 

presssure
zero 

flow
2R

concrete

concrete

stiff clay

stiff clay

bored pile - concrete poured in
surrounding clay has different properties
need to build in allowance for stiffness of clay beyond
(continuity)
ratio of cv for concrete and soil
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Axisymmetric analysis
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Axisymmetric analysis
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Axisymmetric analysis
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Finite difference: more complex problems
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Increased stiffness on hydration
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Increased stiffness on hydration
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sliding of pipeline on soft soil layer
pipeline

parabolic 

isochrone
consolidation front

 penetration l
l

hs

u

uo

δug

δud

un

generation of pore pressure 

(effect of change of µ)

dissipation of pore pressure 

through drainage
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sliding of pipeline on soft layer
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sliding of pipeline on soft soil layer

volumetric 

strain

vertical stress
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sliding of pipeline on soft soil layer

volumetric 
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sliding of pipeline on soft soil layer

three unknowns:

δεv the compression of the slip layer

δu the eventual change in pore pressure in the slip layer

ℓ the depth to which the parabolic iscohrone extends
into the soil

ensure compatibility between three governing physical
mechanisms:

mechanical response of the sheared soil

the flow of water across the boundary

the expansion of the underlying soil to maintain the
overall constant volume condition
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sliding of pipeline on soft soil layer

shearing model

µ̃ =
γ̃

1 + γ̃
; τ̃ = µ̃(1− ũ) =

γ̃(1− ũ)

1 + γ̃

effect of strain rate

µ̃f = 1 + ζ log10
˙̃γ
˙̃γr

pore pressure parameter:

ã = aµf =
ψ̃

(1− µ̃)(1− ũ)− ψ̃
(1)
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sliding of pipeline on soft soil layer

dũ

dt̃
=
ãℓ̃(1− ũ)(1− µ̃)2 ˙̃γ − 2ũ

ℓ̃(1 + ãµ̃)

dψ̃

dt̃
= −

dũg

dt̃
= ã

(1− ũ)(1− µ̃)2 ˙̃γ + 2µ̃(ũ/ℓ̃)

1 + ãµ̃

dℓ̃

dt̃
=

6

ℓ̃
−

ãℓ̃

ũ

(1− ũ)(1− µ̃)2 ˙̃γ

1 + ãµ̃
+

2

1 + ãµ̃

sequence of operation:
δt̃→ δγ̃ → δµ̃; δt̃→ δũd;
δµ̃ and δũd → δũg; δũ→ δℓ̃; δũg → δψ̃
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sliding of pipeline on soft soil layer

δ̃ = δGo/hsµfq = γ̃ = Goγ/µfq = ṽt̃ = δ̃

t̃ = cvt/h
2
s

ṽ = vGohs/µfqcv = δ̃/t̃
˙̃γ = γ̃/t̃ = h2sGoγ̇/µfqcv
µ̃ = µ/µf
µ̃f = µf/µfo

ψ̃ = Eoψ/q
τ̃ = τ/µfq

ũ = u/q

ℓ̃ = ℓ/hs
dimensionless groups to ensure general applicability of
analyses
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sliding of pipeline on soft soil layer
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sliding of pipeline on soft soil layer
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sliding of pipeline on soft soil layer
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Less is more

introduction

consolidation analysis using parabolic isochrones

application to embankment on soft clay

behaviour of hydrating cement/soil mixture

pipeline-seabed interaction

conclusion

– p. 8/8



Hydration of cement paste: Conclusions

exact solutions can be obtained - FE sledge hammer
not always necessary

nondimensional approach widens applicability of
solution

parabolic isochrones provide a simple approximate
solution - mechanisms clearly incorporated

finite difference solution allows solution for complex
problems

– p. 15/15



Less is more: Step 0: Conclusions

Mathematics and civil engineering education

A fully competent engineer must understand the
mathematics necessary (but not sufficient) as the basis
for making decisions and for communicating with other
engineers, especially across disciplines.

Most engineers will find it easier to learn and grasp
engineering principles if they are previously familiar with
the underlying mathematics.

– p. 37/48



Mathematics and civil engineering education

Exceptional people may well be able to perceive sound
engineering solutions before they understand why - this
is the way civil engineers worked mid 19th century - but
to impose this order on the majority at the present day
would be a handicap.

Greyness correlates positively with narrowness of
interest and shortness of vision ... not with high
achievement in any particular discipline.

– p. 38/48



Mathematics and civil engineering education

I am reminded of the talking parrot. The concept of
‘pretty’ is limited to pronunciation rather than an
attractive mate and who is ‘Polly’ anyway?

The inability to use the back of an envelope to estimate
an answer, to assess the effect of a changed input
parameter on the result, reduces the engineer to the
level of parrots, reproducing calculations with no
understanding.

David Beadman of Bachy Soletanche : New Civil Engineer (1 Jun 2000)

– p. 39/48



Step Zero 
 

Step Zero of any modelling – especially finite element or 
centrifuge modelling – is to write down the 
answer before you switch on your computer, open the 
operating manual, design your experiment and 
instrumentation, etc.   
 
This vital step can be supported by ‘back of the envelope’ 
calculations which must capture the essence of the 
mechanics of the problem. 
 

Write down the answer! 



Less is more: Step 0

observation

prediction
reflection

before you switch on the computer...

...write down the answer!

always start with prediction

if subsequent observation unexpected...

reflection required to improve prediction
(understanding)

– p. 40/48



Less is more: Step 0

simplified problems

or ‘system’ level description

hand calculations - exact solutions?

seeking confidence in predictions

treat numerical output with caution unless corroborated

– p. 41/48



Less is more: Step 0

first order modelling

adequate complexity

what characteristics of response do we think are
important (essential)?

stiffness nonlinearity, strength/density, softening,
anisotropy

rate effects, history dependence, cementation, bond
breakage

particle breakage, particle erosion, non-monotonic
loading, infinite repetitions

– p. 42/48



Less is more: Step 0

simple analysis

reasonable assumptions for unknown quantities

inclusion of essential features

dimensionless groups

– p. 43/48
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Abstract9

Mixtures of cement and mine waste are used as backfill in underground mines10

to provide support, which enables increased mineral extraction. Unlike most11

cemented material, the properties of mine backfill are relied upon immediately12

after cement is added and the material deposited underground. It is not just13

the properties of the final cemented product but also the behaviour of cemented14

backfill during the hydration process that is important. During the hydration15

process, the backfill experiences chemically induced volume changes. These vol-16

ume changes can lead to the development of effective stresses, which control the17

loads generated on barricade walls and the subsequent stability of unsupported18

faces.19

Although the processes that interact during cement hydration appear complex,20

the governing equation can be derived in terms of a small number of dimensionless21

parameter groups. The equation is simply the diffusion equation with a time-22

dependent source/sink term for which an analytical solution can be obtained23

under certain simplifying geometries. Approximate solutions can be obtained24

using a technique of analysis in which the mode shape of the spatial pore pressure25

1



variation is assumed. Such solutions provide benchmarks for simplified problems26

against which results of finite element modelling (for example) can be compared27

in order to confirm that the controlling mechanisms have been correctly identified.28

Keywords: self-desiccation, consolidation, dimensional analysis, numerical anal-29

ysis, mine backfill30

Introduction: Step 031

Confronted by a complex geotechnical problem involving chemical shrinkage, flow32

and mechanical deformation, it is almost inevitable that a commercial finite ele-33

ment (or equivalent) program will be sought to obtain a detailed solution. If we34

see the problem as complex then it is likely that the computer program will also35

see the problem as complex. The computer will usually chug through to a result36

and the engineer’s task is to convince himself and his client that this is indeed the37

correct result. There is a necessary discipline to numerical modelling which may38

be described as ‘Step 0’ (?): before you reach for the computer program, open39

the manual, turn on the computer - write down the answer! The logic is clear: if40

you do not have an idea about the likely magnitude, direction etc of the eventual41

deformation, support force, pore pressure, then you will be unable to recognise42

when the computer is leading you up a blind alley.43

Step 0 is therefore about ‘back-of-the-envelope’ calculations demonstrating a44

clear idea of the mechanisms governing the problem. If the computer result differs45

significantly from the prior rough estimate then there must be a misunderstanding46

in your simple analysis or in the detailed computer analysis which evidently needs47

to be resolved iteratively.48

Step 0 may seem daunting but it is concerned with order of magnitude estimates,49

breaking down complex systems into simpler parts and generating benchmark50
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results which can be used to check that the numerical analysis is on the right51

track before embarking on the analysis of problems which are beyond the reach52

of simple solutions.53

This paper is concerned with the description of a problem which might initially54

appear to be too complex for such simple analyses.55

In order to improve mineral extraction from deep mines, mixtures of mine waste56

and cement can be used to fill existing openings (stopes) so that, as the cement57

hydrates and develops strong bonds, the initially cohesionless material develops58

a strength which enables it to stand unsupported and to permit excavation of59

adjacent pillars. The hydration of the cement produces products with a volume60

which is typically less than the sum of the volumes of their constituents (water61

and cement).62

Provided the backfill material is saturated, hydration volume change requires63

pore water movement with development of excess pore pressures and subsequent64

consolidation. If the hydrating mixture has a high permeability, pore fluid can65

flow under very low hydraulic gradients. This results in no appreciable change in66

pore pressure or effective stress. However, for low permeability materials, large67

hydraulic gradients may be required to generate the flow resulting in significant68

negative excess pore pressures and corresponding increases in effective stress.69

This process has been referred to as ‘self-desiccation’ (?). The effective stress70

change as a result of self-desiccation has been shown to be significant in control-71

ling both the short and long terms strength of backfill in underground mining72

operations and has a significant impact on the loads applied to barricade walls73

built to contain the backfill. In principle, the volume changes that accompany74

the process of self-desiccation would also have significant influence on the lateral75

stresses that are generated in a bored pile, where the hydrating material is again76

kinematically confined by the surrounding soil.77
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This paper is concerned with the generation of bench-mark results for a problem78

involving the chemical volume change during hydration of cement-soil (or cement-79

tailings) mixtures and the associated consolidation and flow within the material80

(assumed saturated). Writing the governing equation in terms of dimensionless81

quantities makes the solution applicable to an infinite range of real problem di-82

mensions and material properties. Although the problem appears complicated,83

it can be encapsulated in a rather familiar governing partial differential equation84

for which exact solutions exist for certain simple geometries. It will be shown85

how approximate solutions can be obtained by applying an understanding of the86

governing mechanisms at the system level rather than the element level. The87

solutions are used to validate a numerical procedure for simulating the impact of88

chemical volume change of more complex boundary value problems.89

Hydration of cement: one-dimensional conditions90

We make the usual continuum assumption that, although we are dealing with a91

particulate material, our boundary value applications are sufficiently large that we92

can ignore the fluctuations in stresses and displacements that occur at scales of the93

order of a few particle sizes. The governing equations are written in incremental94

form, describing what happens in a time increment δt.95

There will in general be a volume change associated with the hydration process.96

There will typically be seepage flow into and out of the element driven by Darcy’s97

Law. Supposing for simplicity that the total stress on the element is constant,98

then a change of pore pressure will imply a change of effective stress and hence a99

change in volume of the soil/aggregate/cement/hydration products. Compress-100

ibility of the pore water may also be included in the balance of volumetric effects101

(Fig 1) and this leads to the appropriate governing equation.102
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water

unhydrated cement

hydration product

aggregate

1.  initial state

2.  volume of hydration products increases; : volume of cement and 

water decreases

3.  volume change resulting from seepage flow

4.  pore pressure change: change in effective stress;  compression of 

solid skeleton, compression of pore water

1.                    2.                    3.                      4. seepage

Fig. 1: Volume changes in hydrating element

The current degree of hydration ζ = 1− µcc where µcc =Mc/Mco is the ratio of103

current mass of unhydrated cement and original mass of (unhydrated) cement in104

the mixture. The rate of hydration decreases as the current degree of hydration105

heads towards completion:106

dζ

dt
= κ(1− ζ) = −dµcc

dt
; ζ = 1− exp(−κt) = 1− µcc (1)

where κ is a parameter controlling the rate of hydration.107

The ratio of the masses of water δMwh and cement δMc =Mcoδµcc that combine108

to form the hydration products is constant λ = δMwh/δMc. The specific gravity109

of the cement is Gc and the typical specific gravity of the hydration products is110

Gh. The volume of hydration products is −(1+λ)δµccMco/Ghρw and the volume111

of the constituent water and cement is −(1/Gc + λ)δµccMco/ρw, where ρw is the112

density of water and the negative sign is required because the mass of unhydrated113

cement is decreasing. With total volume V of a representative element, the initial114
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volume fraction of cement vco =Mco/GcρwV . The rate of volume loss of hydration115

products (which is the rate of creation of space in the hydrating element) is:116

δVh = κωvco exp(−κt)V δt (2)

where117

ω = 1− Gc

Gh

+ λ

(
Gc −

Gc

Gh

)
(3)

Typical values might be Gc ∼ 3.1, Gh ∼ 2.3, λ ∼ 0.25, ω ∼ 0.1.118

Equation (2) can be integrated to get the change in volume within an element119

since the beginning of hydration120

∆Vh(t) = ωνcoV [1− exp(−κt)] (4)

Previous researchers (? summarised by ??, and ?) express the chemical shrinkage121

after complete hydration using a parameter described as the ‘efficiency of hydra-122

tion’ (Eh) expressed in units of volume/mass. The parameter ω is a dimensionless123

form of Eh representing volume loss after complete hydration as a proportion of124

the original volume of cement.125

The increase in volume of water resulting from seepage according to Darcy’s126

Law:127

δVws = V

[
k

ρwg

∂2u

∂x2

]
δt (5)

where k is permeability and g is acceleration due to gravity.128

If we assume that the aggregate-water-cement mixture has a one-dimensional129

stiffness Eo = E(1− ν)/[(1+ ν)(1− 2ν)] then, if the pore pressure in the element130

changes while the total stress σ remains constant, there will be a change in131

effective stress σ′ resulting from the change in pore pressure, δσ′ = −δu leading132
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to compression straining of the element:133

δϵx =
δσ′

Eo

= −δVE
V

(6)

If the bulk modulus Kw of the pore water is finite then there will also be a134

change in volume of the pore water δVw resulting from the change in pore water135

pressure:136

δVw = nV δu/Kw (7)

where n is the porosity of the mixture. The remaining components - aggregate,137

cement - are essentially incompressible; straining of the mixture implies straining138

of the ‘soil skeleton’ which is the void space available for the fluid component -139

which for the saturated mixture is just the water.140

There will then be a balance between the increase in void space due to cement141

hydration, the loss of volume due to change in effective stress, the gain in volume142

of water from seepage, and the reduction in volume of the compressed water:.143

δVh − δVE − δVws − δVw = 0 (8)

κωνco exp(−κt)−
k

ρwg

∂2u

∂x2
+

1

Eo

∂u

∂t
+

n

Kw

∂u

∂t
= 0 (9)

We can combine the last two terms by writing 1
E∗ = 1

Eo
+ n

Kw
, or else treat the pore144

fluid as incompressible for the present, recognising that the consequence of finite145

pore fluid compressibility will be to produce a small decrease in compressibility.146

We define a coefficient of consolidation cv = kE∗/ρwg; for hydration of a fi-147

nite layer of thickness H we introduce a dimensionless coordinate x̃ = x/H, a148

dimensionless time t̃ = cvt/H
2, a dimensionless rate of hydration κ∗ = κH2/cv,149

and a dimensionless pore pressure ũ = u/E∗ωνco. Our governing equation then150
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x

x

0 H

H

zero pore 

pressure
zero flow

zero flow zero flow

a.

b.

Fig. 2: One-dimensional problem definition: (a) element with no drainage at either
end; (b) element with drainage at one end

becomes:151

κ∗ exp(−κ∗t̃)− ∂2ũ

∂x̃2
+
∂ũ

∂t̃
= 0 (10)

In the absence of cement hydration (κ∗ = 0) this is the familiar consolidation152

or diffusion equation. In the presence of cement hydration the first term acts as153

a sink term - attempting to remove water from the element (all elements) as a154

known function of time.155

Kaczmarek and Hueckel (1998), for example, tackle a broader problem including156

effects of chemical concentration gradients as limiting factors for the reaction157

dynamics whereas we suppose that in the weak mixes that are used in mine158

backfill there is no lack of reaction constituents. We use this configuration as a159

vehicle for exploring available solutions of a problem with some realism. Through160

the introduction of dimensionless groups we have defined the problem in terms of161

one variable ũ varying with position x̃ and time t̃ with just one single controlling162
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Fig. 3: One-dimensional flow: isochrones of ũ (κ∗ = 0.1)

parameter κ∗.163

Finite layer with impermeable boundaries164

For an initially uniform mixture with no drainage at the ends (Fig 2a), there165

will be no flow of water and the one-dimensional element will be undrained:166

∂2ũ/∂x̃2 = 0. Then167

dũ

dt̃
= −κ∗ exp(−κ∗t̃) (11)

168

ũ = exp(−κ∗t̃)− 1 (12)

and as t̃ → ∞, ũ → −1 because the reduction in volume of the hydration169

products increases the void space available and a pore suction is necessary in170

order to compress the soil skeleton to compensate. This case provides a limiting171

case against which to compare results of analysis of more complex problems: (12)172

represents an upper limit on the pore pressure that can be generated). In fact,173
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Fig. 4: One-dimensional flow: variation of normalised pore pressure ũ at impermeable
boundary x̃ = 0 with normalised time t̃

with a permeable boundary (as analysed in the next section) the presence of the174

drainage boundary is only gradually felt through the hydrating concrete away175

from this boundary. Deprived of this feeling the pore pressure increases initially176

as ũ ≈ −κ∗t̃.177

Finite layer with one impermeable boundary178

For a finite one-dimensional layer with no drainage at one end, and no pore179

pressure at the other (Fig 2b), the boundary conditions can be written: dũ/dx̃ = 0180

at x̃ = 0 and ũ = 0 at x̃ = 1. With free drainage at x̃ = 1 we expect ũ → 0 as181

t̃→ ∞. The remaining boundary condition is an initial condition: at time t̃ = 0,182

ũ = 0 for 0 < x̃ < 1.183

10



?(p131) give the solution to the diffusion equation with a general time dependent184

source:185

−A(t̃)− ∂2ũ

∂x̃2
+
∂ũ

∂t̃
= 0 (13)

as186

ũ =
4

π

∞∑
m=0

{
(−1)m

2m+ 1
cos

[
(2m+ 1)

π

2
x̃
] ∫ t̃

0

A(τ) exp
[
−π2(2m+ 1)2(t̃− τ)/4

]
dτ

}
(14)

We have A(t̃) = −κ∗ exp(−κ∗t̃) so that:187

ũ =
4κ∗

π

∞∑
m=0

(−1)m+1

2m+ 1
cos

[
(2m+ 1)

π

2
x̃
]
×

× 1

[π2(2m+ 1)2/4− κ∗]

{
exp[−κ∗t̃]− exp[−t̃(π2(2m+ 1)2)/4]

} (15)

Isochrones of normalised pore pressure variation with time through the one-188

dimensional system are shown in Fig 3.189

At the impermeable boundary x̃ = 0 and the normalised pore pressure is:190

ũ =
4κ∗

π

∞∑
m=0

(−1)m+1

(2m+ 1)[π2(2m+ 1)2/4− κ∗]

{
exp[−κ∗t̃]− exp[−t̃(π2(2m+ 1)2)/4]

}
(16)

The variation of normalised pore pressure at the impermeable boundary is shown191

in Fig 4.192

As the hydration occurs, and pore pressures develop, deformations will occur.193

Since it is assumed that the total (axial) stress remains constant, the axial strains194

will be directly related to the changes in pore pressure, which correspond to195

the changes in effective stress, through the one-dimensional stiffness Eo. The196

displacements a(x) through the layer can be calculated by numerical integration of197

the pore pressure ũ, setting the displacement to zero at the impermeable boundary198
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Fig. 5: One-dimensional flow: variation of normalised displacement ã at free boundary
x̃ = 1 with normalised time t̃

x̃ = 0.199

ã =
a

Hωνco

Eo

E∗ =

∫ x̃

0

ũdx̃

=
8κ∗

π2

∞∑
m=0

(−1)m+1

(2m+ 1)2
sin

[
(2m+ 1)

π

2
x̃
]
×

× 1

[π2(2m+ 1)2/4− κ∗]

{
exp[−κ∗t̃]− exp[−t̃(π2(2m+ 1)2)/4]

}
(17)

200

At the free end of the layer x̃ = 1 and the displacement is:201

ã = −8κ∗

π2

∞∑
m=0

{
exp[−κ∗t̃]− exp[−t̃(π2(2m+ 1)2)/4]

}
(2m+ 1)2[π2(2m+ 1)2/4− κ∗]

(18)

Displacements are shown in Fig 5 for the free end of the layer, x̃ = 1.202

There are various limiting regimes of response. For t̃ ≈ 0, movement of pore203
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at impermeable boundary x̃ = 0

water is restricted and the governing equation (10) becomes:204

κ∗ +
dũ

dt̃
= 0; ⇒ ũ = −κ∗t̃ (19)

Plotting ũ/κ∗ with time at x̃ = 0 (Fig 6) confirms this response as a limit to the205

pore pressure generation.206

If the rate of hydration (indicated by the value of κ∗) is extremely high then207

the maximum pore pressure generated will approach the maximum possible pore208

pressure ũ → 1 (Fig 4). In the limit the hydration and consolidation processes209

become completely uncoupled and the consolidation equation is applied to the210

classical problem of dissipation of an initial uniform pore pressure. This dissipa-211

tion occurs in two stages: first the presence of the drainage boundary is gradually212
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Fig. 7: One-dimensional flow: parabolic pore pressure isochrone (a) as effect of free
flow boundary is felt further into hydrating backfill; and (b) as pore pressure at x̃ = 0
is eliminated by flow.

felt at greater distances into the consolidating material. For our layer of thickness213

H the presence of the draining boundary is felt at a time t̃ ≈ 1/16 (?), (?). The214

no-flow pore pressure is ũnf (12). The consolidation is then dominated by the215

first harmonic. The first term of the series solution (15) with x̃ = 0 describes the216

dissipation of the pore pressure at the impermeable boundary:217

ũ = − 4

π

{
exp[−(π2t̃)/4]

}
(20)

Approximate solution using parabolic isochrones218

The approximate solution that can be developed using the method of parabolic219

isochrones assumes simple geometry - a constant mode shape - for the isochrones220

of pore pressure (Fig 3) (?) (instead of using the full complex analytical expression221

(15)) and then applies the known physical constraints at the system level rather222

than at the level of the infinitesimal element. There are two phases of the system223

response.224

In the first phase, the effect of the drainage boundary at x̃ = 1 penetrates225
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gradually into the layer (Fig 7a). The typical pore pressure isochrone for this226

regime assumes a parabolic form for the variation of pore pressure from the no-227

flow limit ũnf to zero at the drainage boundary at time t̃. The area above the228

isochrone shown shaded in Fig 7a indicates the combined change in effective stress229

- and hence change in volume - that has occurred at the present instant of time230

as a result of hydration shrinkage and flow. The rate at which this volume is231

changing must match the rate of flow out of the system which is governed by the232

slope of the isochrone at x̃ = 1. Hence, from the geometry of the parabola:233

d[ũnf ℓ̃/3]

dt̃
=

2ũnf

ℓ̃
(21)

ℓ̃
dℓ̃

dt̃
= 6 +

ℓ̃2 exp(−κ∗t̃)
exp(−κ∗t̃)− 1

(22)

Writing234

M =
exp

[
−κ∗

(
t̃j +∆t̃/2

)]
exp

[
−κ∗

(
t̃j +∆t̃/2

)]
− 1

; ℓ̃j+1 = ℓ̃j +∆ℓ̃ (23)

∆ℓ̃2 + 2
ℓ̃j
(
1−M∆t̃

)
1−M∆t̃/2

∆ℓ̃−
2
(
6 +Mℓ̃2j

)
∆t̃

1−M∆t̃/2
= 0 (24)

and ∆ℓ̃ can be found from the positive root of this quadratic equation.235

In the second phase of response, the drainage front has reached the impermeable236

boundary at x̃ = 0 (Fig 7b) and the balance between the rate of flow at x̃ = 1237

and the rate of change of the area under the parabolic isochrone (shaded in Fig238

7b) which is controlled by the pore pressure ũo at x̃ = 0 now implies:239

d

dt̃
[ũnf − ũo + ũo/3] = −κ∗ exp(−κ∗t̃)− 2

3

dũo

dt̃
= 2ũo (25)
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Fig. 8: One-dimensional flow: approximate analysis using parabolic isochrones: pore
pressure at x̃ = 0

Writing ũj+1 = ũj +∆ũ240

∆ũ = −
3
[
ũj + (κ∗/2) exp(−κ∗(t̃j +∆t̃/2))

]
∆t̃

1 + 3∆t̃/2
(26)

The shrinkage of the hydrating cemented fill is still occurring so that the conse-241

quent continuing reduction (increasing negative magnitude) of ũnf is competing242

against the effect of pore water flow (trying to reduce the negative magnitude of243

ũnf ). The variation of pore pressure at x̃ = 0 deduced from this approximate244

parabolic isochrone solution is shown in Fig 8.245

The displacements calculated from the parabolic isochrone approximation are246

shown in Fig 9. With low values of κ∗ the approximation is perhaps a little too247

coarse but the correspondence between exact and approximate values is really248

rather close (compare Figs 4 and 8 and Figs 5 and 9).249
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Axisymmetric self-desiccation and consolidation250

Under conditions of axial symmetry (Fig 10a), the only certain constraint is251

that the deformation occurs in plane strain with a vertical axis of symmetry.252

We have to combine elastic constitutive response, kinematic compatibility, and253

equilibrium. We assume that the elastic and permeability properties are constant254

with time and position.255

From Hooke’s Law, taking tensile stresses and strains as positive,256

σ′
z = µ(σ′

r + σ′
θ) (27)

and the corresponding change in mean effective stress257

p′ = (1 + µ)(σ′
r + σ′

θ)/3 (28)
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also from Hooke’s law, with the value of σ′
z from (27) and the stiffness formulation258

Eϵr = σ′
r − µσ′

θ − µ2(σ′
r + σ′

θ) = (1 + µ)[(1− µ)σ′
r − µσ′

θ];

Eϵθ = σ′
θ − µσ′

r − µ2(σ′
r + σ′

θ) = (1 + µ)[(1− µ)σ′
θ − µσ′

r] (29)

or alternatively using the compliance formulation259

σ′
r =

E

(1 + µ)(1− 2µ)
[(1− µ)ϵr + µϵθ]

σ′
θ =

E

(1 + µ)(1− 2µ)
[(1− µ)ϵθ + µϵr]

(30)

Then260

σ′
θ + σ′

r =
E

(1 + µ)(1− 2µ)
(ϵr + ϵθ) =

3p′

1 + µ
=

E

(1 + µ)(1− 2µ)
ϵv (31)

Kinematic compatibility links the components of strain through the incremental261

outward radial displacement a262

ϵr =
da

dr
; ϵθ =

a

r
; ⇒ ϵr =

d(rϵθ)

dr
(32)

263

ϵv = ϵr + ϵθ =
da

dr
+
a

r
=

1

r

d(ar)

dr
(33)

From (32) and (29):264

σ′
θ − σ′

r = rµ
dσ′

r

dr
− r(1− µ)

dσ′
θ

dr
(34)

Equilibrium produces a link between total stresses - or effective stresses with pore265

pressure. With tensile stresses positive and pore pressure a positive pressure, we266
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write σr = σ′
r − u (and similarly for circumferential stress).267

σθ − σr = r
dσr
dr

σ′
θ − σ′

r = r
dσ′

r

dr
− r

du

dr

(35)

−rdu
dr

= rµ
dσ′

r

dr
− r(1− µ)

dσ′
θ

dr
− r

dσ′
r

dr

= − E(1− µ)

(1 + µ)(1− 2µ)
r
d

dr
(ϵθ + ϵr) = −rK1

dϵv
dr

(36)

with the controlling stiffness parameter being268

K1 =
E(1− µ)

(1 + µ)(1− 2µ)
(37)

The equation of flow links volumetric strain with pore pressure gradient269

∂ϵv
∂t

=
k

γw

1

r

∂

∂r

(
r
∂u

∂r

)
(38)

The volumetric strain rate arising from the hydration shrinkage is κωνco exp(−κt)270

and the compressibility of the pore water gives an additional term (n/Kw)∂u/∂t271

so that the balance of volumetric strains gives272

κωνco exp(−κt)−
k

γw

1

r

∂

∂r

(
r
∂u

∂r

)
+
∂ϵv
∂t

+
n

Kw

∂u

∂t
= 0 (39)

we have273

K1r
∂ϵv
∂r

= r
∂u

∂r
(40)

274

κωνco exp(−κt)−
kK1

γw

1

r

∂

∂r

(
r
∂ϵv
∂r

)
+
∂ϵv
∂t

+
n

Kw

∂u

∂t
= 0 (41)

where K1 is the stiffness and k the permeability of the cemented fill.275

20



Normalising cv = kK1/γw, r̃ = r/R, t̃ = cvt/R
2, κ∗ = κR2/cv: ϵ̃ = ϵv/ωνco,276

ũ = u/K1ωνco277

κ∗ exp(−κ∗t̃)− 1

r̃

∂

∂r̃

(
r̃
∂ϵ̃

∂r̃

)
+
∂ϵ̃

∂t̃
+
K1n

Kw

∂ũ

∂t̃
= 0 (42)

We might neglect the final term, or incorporate its influence by reducing slightly278

the value of K1.279

The governing equation is now written in terms of the volumetric strain (instead280

of pore pressure) and we have made no constraining assumption apart from plane281

strain and isotropic elasticity. To determine pore pressure from volumetric strain282

we note that283

∂ϵ̃

∂r̃
=
∂ũ

∂r̃
; ⇒ ũ(r̃) = ϵ̃(r̃) + Γ (43)

where Γ is a constant of integration calculated to give zero pore pressure at a284

drainage boundary. For the plain cylinder of cemented fill, ũ = 0 at r̃ = 1 so that285

Γ = −ϵ̃1 and286

ũ = (ϵ̃− ϵ̃1) (44)

To determine incremental displacement we integrate (33)287

a =
1

r

∫ r

0

rϵvdr; ã =
a

Rωνco
=

1

r̃

∫ r̃

0

r̃ϵ̃dr̃ (45)

noting that ã = 0 at r̃ = 0.288

?(p204) give the solution to the axisymmetric diffusion equation for heat flow289

with zero initial and surface temperature and heat production proportional to290

exp(κ∗t) per unit time and unit volume for t > 0. We can adapt this solution291

for our problem to give the radial and time variation of normalised volumetric292
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strain:293

ϵ̃ = − exp[−κ∗t̃]

{
J0[r̃κ

∗1/2]

J0[κ∗1/2]
− 1

}
+ 2κ∗

∞∑
n=1

exp[−R2
nt̃]J0[r̃Rn]

Rn(R2
n − κ∗)J1[Rn]

(46)

where Rn are the positive roots of J0[x] = 0 and J0 and J1 are Bessel functions294

of the first kind of order zero and 1 respectively.295

At the centre, r̃ = 0,296

ϵ̃ = − exp(−κ∗t̃)
{

J0[0]

J0[κ∗1/2]
− 1

}
+ 2κ∗

∞∑
n=1

exp(−R2
nt̃)J0[0]

Rn(R2
n − κ∗)J1[Rn]

(47)

with J0[0] = 1.297

At the boundary of the hydrating material r̃ = 1298

ϵ̃1 = 2κ∗
∞∑
n=1

exp[−R2
nt̃]J0[Rn]

Rn(R2
n − κ∗)J1[Rn]

(48)

299

Hence300

ũ = − exp[−κ∗t̃]

{
J0[r̃κ

∗1/2]

J0[κ∗1/2]
− 1

}

+ 2κ∗
∞∑
n=1

exp[−R2
nt̃] [J0[r̃Rn]− J0[Rn]]

Rn(R2
n − κ∗)J1[Rn]

(49)

The central pore pressure is shown as a function of time in Fig 12.301

In order to deduce the radial displacements from the computed volumetric302

strains we use (45).303

ã =
1

r̃

∫ r̃

0

r̃ϵ̃dr̃ (50)
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and deduce after some manipulation that the displacement is:304

ã = − exp[−κ∗t̃]

{
J1[r̃κ

∗1/2]

κ∗1/2J0[κ∗1/2]
− r̃

2

}
+ 2κ∗

∞∑
n=1

exp(−R2
nt̃)J1[r̃Rn]

R2
n(R

2
n − κ∗)J1[Rn]

(51)

The displacement at the centre r̃ = 0 is zero. The displacement at the outer305

boundary r̃ = 1 is:306

ã = − exp[−κ∗t̃]

{
J1[κ

∗1/2]

κ∗1/2J0[κ∗1/2]
− 1

2

}
+ 2κ∗

∞∑
n=1

exp(−R2
nt̃)

R2
n(R

2
n − κ∗)

(52)

The radial displacement at the outer boundary is shown as a function of time in307

Fig 13.308

Finite difference solution for increasing stiffness with hydration time309

The analytical solution of (10) can only be obtained for simple boundary con-310

ditions and constant material parameters. A finite difference formulation can311

be used to find solutions for a wider range of problems. The one-dimensional312

problem lends itself to a central difference formulation in space and time. With313

time step ∆t̃ and position step ∆x̃, and with subscript n referring to position and314

superscript j referring to time, (10) becomes for the one-dimensional problem:315

κ∗ exp(−κ∗[t̃j + t̃j+1]/2)−

− 1

2

[
ũj+1
n−1 − 2ũj+1

n + ũj+1
n+1

∆x̃2
+
ũjn−1 − 2ũjn + ũjn+1

∆x̃2

]
+
ũj+1
n − ũjn
∆t̃

= 0
(53)
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This is equivalent to calculating the finite difference expressions at the time t̃j +316

∆t̃/2. This leads to a set of simultaneous equations for ũj+1
i :317

−β
2
ũj+1
n−1 + (1 + β)ũj+1

n − β

2
ũj+1
n+1

=
β

2
(ũjn−1 + ũjn+1) + (1− β)ũjn − κ∗ exp(−κ∗[t̃j + t̃j+1]/2)∆t̃

(54)

where β = ∆t̃/∆x̃2.318

For the axisymmetric problem the corresponding finite difference formulation of319

the governing equation (42) in terms of volumetric strain is:320

− β

2

[
1− ∆r̃

2r̃

]
ϵ̃j+1
n−1 + (1 + β)ϵ̃j+1

n − β

2

[
1 +

∆r̃

2r̃

]
ϵ̃j+1
n+1 =

=
β

2

[
1− ∆r̃

2r̃

]
ϵ̃jn−1 + (1− β)ϵ̃jn +

β

2

[
1 +

∆r̃

2r̃

]
ϵ̃jn+1

− κ∗ exp(−κ∗[t̃j + t̃j+1]/2)∆t̃

(55)

For both problems the resulting set of equations has the form:321

Mϵ̃j+1 = d (56)

where the matrix M is tridiagonal. The equations resulting from (55) have the322

form:323

M =



b1 c1 0 0 0 0 0

a2 b2 c2 0 0 0 0

0 a3 b3 c3 0 0 0

.. .. .. .. .. .. ..

0 0 0 an−2 bn−2 cn−2 0

0 0 0 0 an−1 bn−1 cn−1

0 0 0 0 0 an bn





ϵ̃j+1
1

ϵ̃j+1
2

ϵ̃j+1
3

..

ϵ̃j+1
n−2

ϵ̃j+1
n−1

ϵ̃j+1
n



=



d1

d2

d3

..

dn−2

dn−1

dn



(57)

25



0 0.5 1 1.5 2

 -0.4

 -0.3

 -0.2

 -0.1

0

0 0.5 1 1.5 2

 -0.4

 -0.3

 -0.2

 -0.1

0

a. b.

u
~

u
~

t
~

t
~

analytical 

solution

analytical 

solution

∆t
~
 = 0.5

∆t
~
 = 0.5

0.05
0.05

0.005
0.005

0.001

0.001

0.0005

0.0005

Fig. 14: Effect of timestep on accuracy of finite difference calculation: (a) incremental
formulation; (b) single step formulation (54)

A solution can be obtained quite efficiently by the Thomas substitution method324

without the need for matrix inversion (?), (?). First forward substitution:325

for i = 1 to n− 1;326

ci = ci/bi; di = di/bi; bi+1 = bi+1 − ai+1ci; di+1 = di+1 − ai+1di;327

then backward substitution:328

ϵ̃j+1
n = dn/bn;329

for i = n− 1 to 1;330

ϵ̃j+1
i = di − ciϵ̃

j+1
i+1 .331

The effect of changing the step size for time in the finite difference solution is332

shown in Fig 14b. With large step size ∆t̃ = 0.5 the solution only matches the333

analytical solution very approximately. For smaller time steps ∆t̃ = 0.05, 0.005,334

0.001 the result converges rapidly onto the analytical solution. For the present335

application step sizes ∆x̃ = 0.02 and ∆t̃ = 0.0001 have been used.336

The finite difference solution can be applied to problems which do not admit337

of analytical solution. For example, in order to produce equations for which338
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analytical solutions are available we have restricted ourselves to hydration and339

consolidation with stiffness and permeability properties that do not change with340

time or position. In reality the stiffness of the cemented fill will increase as the341

hydration process continues (?). The permeability of the mixture controlling the342

rate of pore pressure movement may also change. The finite difference solution343

is readily adapted to include changes in stiffness (and permeability). For the344

hydrating concrete in the one-dimensional analysis we set E∗/E∗
i = ξ(t):345

ξ =
E∗

E∗
i

= 1 + (ξE − 1)ζ = ξE − (ξE − 1) exp(−κ∗t̃) (58)

where E∗
i and E∗ are the initial and current stiffnesses and ξE is the maximum346

increase in stiffness which occurs with completion of hydration, at infinite time.347

We assume that the governing equation describes the increments of pore pressure348

that occur during the time increment. However, the Darcy flow will be controlled349

by the full gradient of pore pressure. We write ũ = ũi + δũ where ũi is the pore350

pressure at the beginning of the time step. The governing equation (10) becomes:351

κ∗ exp(−κ∗t̃)− ∂2ũi
∂x̃2

− ∂2(δũ)

∂x̃2
+

1

ξ

∂(δũ)

∂t̃
= 0 (59)

The coefficient of consolidation cv is calculated for the initial stiffness E∗
i so that352

all the dimensionless definitions can be retained. The time dependent factor353

E∗
i /E

∗ = 1/ξ must be applied to the time derivative.354

The finite difference equation becomes:355

−βδũj+1
n−1 + (1/ξ + 2β)(δũj+1

n )− βδũj+1
n+1

= β(ũji(n−1) + ũji(n+1)) + δũjn − 2βũji(n) − κ∗ exp(−κ∗[t̃j + t̃j+1]/2)∆t̃

(60)

noting that δũjn = 0 by definition. The increments of pore pressure that are cal-356
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Fig. 15: Variation of normalised pore pressure ũ at the impermeable boundary x̃ = 0
with normalised time t̃: dashed lines, constant stiffness; solid lines, stiffness increasing
by factor ξE = 5 with hydration; dotted lines, ABAQUS calculation

culated in each time increment are added to the pre-existing pore pressures to be357

used as initial pore pressures for the subsequent time increment. The deforma-358

tions are computed from the increments of pore pressure using the appropriate359

current stiffness. This procedure has been used to compute the development360

of pore pressures (Fig 15) and displacements (Fig 16) in a cemented fill whose361

stiffness increases by a factor ξE = 5 with full hydration (compare Fig 4). The362

displacements can be compared with those which were calculated for constant363

stiffness and shown in Fig 5. As hydration progresses, the stiffness increases with364

time (58), the maximum change in pore pressure increases (becomes more nega-365

tive) and the maximum displacement at the free boundary is reduced. The volume366
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normalised time t̃: dashed lines, constant stiffness; solid lines, stiffness increasing by
factor ξE = 5 with hydration; dotted lines, ABAQUS calculation

change developing with hydration is not affected by the stiffness variation: with367

higher stiffness a given volume change generates a higher change of stress. With368

increasing time, the displacement is ‘frozen’ into the hydrating concrete whereas369

in the constant stiffness calculation the displacement returns to zero (Figs 16,370

5). The frozen displacement represents a permanent locked-in shrinkage of the371

hydrated cemented fill.372

Numerical modelling of coupled chemical shrinkage and consolidation373

The analytical and approximate solutions presented above are restricted to one-374

dimensional and axisymmetric geometries. In order to model more general bound-375
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ary conditions, along with more general constitutive behaviour, a numerical solu-376

tion is required. A numerical approach for simulating coupled chemical shrinkage377

and consolidation has been developed using the ABAQUS finite element software378

package (?). There are number of potential ways by which the chemical volume379

loss that occurs during cement hydration might be simulated. ? imposes a strain380

on the pore fluid which is numerically equivalent to a chemical volume change.381

The change in porosity that occurs as a result of volumetric strains resulting from382

changes in mean effective stress is captured. However, the change in porosity that383

occurs as a result of the formation and growth of hydration products is not repre-384

sented. However, this change in porosity is likely to be small for cement contents385

in the range of 3-6% that are most commonly used in mine backfill.386

Such a procedure has been applied to simulate the one-dimensional problem (see387

Fig 2b) with chemical volume change. The problem was modelled with 30 8-noded388

plane strain finite elements. Repeated ABAQUS simulations have confirmed the389

theoretical deduction that the normalised pore pressure ũ is controlled only by390

the parameter κ∗: dimensionless (normalised) numerical results were insensitive391

to the values of individual material parameters provided that the dimensionless392

parameter κ∗ remained the same.393

The results obtained from ABAQUS with the shrinkage simulation procedure394

for the one-dimensional problem and stiffness increasing with time are compared395

with the finite difference solution in Figs 15, 16. The calculated displacements396

and pore pressures show excellent agreement - they are essentially identical. The397

precise description of the peak of the pore pressure generation curve (Fig 15) is398

dependent on the size of the timestep size for the calculations.399
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Conclusions400

This paper has tried to emphasise a number of key messages.401

1. There is a need to be able to reduce apparently complex problems to their402

constituent parts in order to be able to make simple deductions about their403

expected response before embarking on an extensive programme of numer-404

ical analyses. This ‘step zero’ is an essential discipline to force the engineer405

to decide what physical mechanisms control the behaviour at element or406

basic system level. The results of subsequent numerical or physical mod-407

elling should be inspected to ensure that the understanding of the dominant408

mechanisms is indeed correct, and an iterative procedure may be required409

in order to provide a convergence of understanding and observation.410

2. It will not always be possible to reduce complex problems to a simple con-411

ceptual model which can be used as part of the step 0 ‘back-of-the-envelope’412

prediction. However, careful consideration of the controlling mechanisms,413

combined with some simple but reasonable assumptions about the contrib-414

utory parameters can lead to clear identification of dimensionless groups.415

Description of a problem in terms of dimensionless groups immediately gen-416

eralises the problem and its solution. The solutions then possess an infinite417

range of applicability.418

3. It may serendipitously be possible to obtain analytical solutions to the gov-419

erning equations. More frequently it will be necessary to break down the420

problem further and to explore ways in which approximate solutions can421

be obtained. One method of solution might involve interpretation of the422

problem as a single system rather than as a collections of interconnected423

elements. The parabolic isochrone approach to approximate solution of424

consolidating systems builds on an assumed parabolic mode shape for the425
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isochrones of pore pressure. Such a technique finds a wide range of appli-426

cations and can provide surprisingly accurate results.427

4. It is not difficult to convert governing nonlinear partial differential equations428

into finite difference form for numerical solution. Such a finite difference429

approach does not require particularly complex programming but does ex-430

tend the range of problems for which results can be obtained to provide431

benchmark comparisons for subsequent finite element analyses.432
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Shearing and consolidation: axial pipeline
resistance?

Introduction

This note takes its inspiration from the model used by Randolph, White and
Yan (2012) to describe the axial soil resistance of a pipeline on a deep seabed.
The sliding of the pipeline is treated as a shearing process occurring on a thin
interface of soil which can be described by a simple shear element which is capable
of shearing and compression. This simple shear element is then coupled with an
underlying compression (oedometer) element which maintains an overall constant
volume condition by acting as a consolidation and drainage buffer in response
to pore pressure changes and compressions in the interface layer. A consistent
modelling approach is used to describe stiffness and strength and effects of rate of
shearing. The contribution of the underlying oedometer element to consolidation
is treated using the parabolic isochrone approximation.

Sliding of planar interface

The pipeline is assumed to be sitting and sliding on a thin planar interface layer
of soil of thickness hs. Shearing is concentrated in this interface layer, but the
layer can also compress. Beneath this interface region is an ’infinite half space’ of
soil which acts as a drainage buffer for pore pressure changes in the interface and
provides possibility only for one-dimensional compression. This provides a nice
example of the description of a real problem using two ‘one-dimensional’ elements
- one a simple shear element (which combines simple shear and one-dimensional
compression) and the other a purely oedometric element.

1. Critical state line

Suppose that there is a critical state line which can be defined locally in relation
to the initial state of the soil in terms of a ‘state variable’ ψi = εvmax (which is the
normal or volumetric strain required to bring the soil to the critical state at the
current effective stress) and a stress level defined by the pipeline contact stress
q. The compression of the soil is described by a one-dimensional stiffness Eo

(Fig 1). This is equivalent to declaring the critical state line to be locally linear -
consistent with the constant stiffness assumed for the analysis of consolidation - in
terms of vertical strain and vertical stress. The maximum pore pressure that can
be generated on sliding under constant volume conditions is then umax = Eoψi

and the link between actual pore pressure generation and actual vertical strain
during partial drainage is εv = [ψi − u/Eo].
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Fig. 1: Vertical strain and pore pressure development

2. Compression and consolidation

If vertical strain occurs within the interface of thickness hs (Fig 2) (a vertical
compression for ψi > 0), then there must be a compensating volumetric expansion
of the nearby soil beneath in order to maintain an overall condition of constant
volume. This expansion is associated with the advancing of a consolidation front
into this soil as the pore pressure change at the boundary with the interface layer
is felt to increasing depth. We assume a parabolic ‘mode shape’ for the pore
pressure isochrone in this soil to a depth ℓ. The parabolic isochrone indicates
that the average increase in pore pressure over the depth ℓ (decrease in effective
stress) is one third of the change in pore pressure at the boundary. The resulting
deformation is uℓ/3Eo. We also know for the consolidating soil that the rate at
which water flows across the boundary with the interface layer 2(u/ℓ)(k/γw) must
balance the rate of volume expansion resulting from the reduction in effective
stress described by the parabolic isochrone. Hence:

d(uℓ)

3Eodt
=

2ku

ℓγw
⇒ ℓ =

√
12cvt (1)

for constant pore pressure u, where the coefficient of consolidation cv = kEo/γw.

The deformation of the shearing layer is hs[ψi − u/Eo] so that

uℓ

3Eo

= hs

[
ψi −

u

Eo

]
⇒ ũ =

ψ̃i

1 +
√
4t̃/3

(2)

where we introduce dimensionless groups t̃ = cvt/h
2
s for time, ũ = u/q for pore

pressure and ψ̃ = Eoψ/q for state variable. There is evidently a contradiction in
writing this equation because we have assumed constant pore pressure in calcu-
lating the value of ℓ. We resolve this issue in the next section.
If the interface soil is trying to compress as it is sheared then the vertical strain
will be (let us suppose) positive. For undrained or partially drained interface
soil the pore pressure will be positive and water will flow down the pore pressure
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gradient into the underlying soil. As time goes by the pore pressure at the
interface reduces but the compression of the interface layer increases. We know
that ũ ≤ 1 since the pore pressure u cannot exceed the total normal stress q.
This in turn implies a constraint that ψ̃ ≤ 1. The limiting value of pore pressure
in undrained shearing is Eoψ so that for ψ̃ < 1 the maximum value ũ = ψ̃ < 1.

3. Stress:strain response

Next a hyperbolic relationship between mobilisation of shear stress ratio µ = τ/σ′

and strain γ is introduced:

µ

µf

=
Goγ

qµf +Goγ
µ̃ =

γ̃

1 + γ̃
(3)

where µf is the ultimate stress ratio and Go is an initial shear stiffness which
might be related to Eo through some sort of Poisson’s ratio (Fig 3):

Go

Eo

=
E

2(1 + ν)

(1 + ν)(1− 2ν)

E(1− ν)
=

(1− 2ν)

2(1− ν)
(4)
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and a normalised shear strain emerges: γ̃ = Goγ/µfq where µfq/Go is the elastic
strain to reach the failure shear stress; and µ̃ = µ/µf . The current shear stress τ
is proportional to current effective stress q − u:

τ = µ(q − u) ⇒ τ̃ = µ̃(1− ũ) =
γ̃(1− ũ)

1 + γ̃
(5)

with τ̃ = τ/µfq.
We have defined ’dimensionless’ strain and time. Displacement δ = γhs and
velocity v = δ/t so that δ̃ = δGo/hsµfq and ṽ = vGohs/µfqcv so that ṽ = δ̃/t̃
and also γ̃ = δ̃ = ṽt̃. The displacement is scaled not with the thickness of the slip
layer hs but with the displacement matching the elastic shear strain at failure.
The velocity of sliding is scaled with this displacement and with a time emerging
from the consolidation process. For a given displacement δ̃r, t̃ = δ̃r/ṽ and

ũ

ψ̃i

=
1

1 +
√
4δ̃r/3ṽ

(6)

and ũ/ψ̃i is plotted as a function of ṽ for δ̃r = 0.01, 0.1, 1, 10 in Fig 4.
The shear stress τ̃ is plotted as a function of t̃ for different ṽ = 0.001, 0.01, 0.1,
1, 10, 100 in Fig 5:

τ̃ =
ṽt̃(1 +

√
4t̃/3− ψ̃i)

(1 + ṽt̃)(1 +
√

4t̃/3)
(7)

All the curves converge (in the logarithmic plot, Fig 5) as the strain increases
- but of course failure τ = τf can only be attained at infinite strain. The shear
stress τ̃ is also shown as a function of shear strain γ̃ = ṽt̃ for the same values of
ṽ (Fig 6). The curves are plotted for ψ̃i = 0.4.
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Effect of strain rate

Observations at all scales suggest a dependence of resistance to shearing on the
rate of shearing above that expected from the drainage and consolidation proper-
ties of the boundary between the sliding layer and the underlying soil. There are
three timescales involved in the problem: one concerned with the rate of shearing,
one concerned with the consolidation properties of the underlying sediment cv,
and the third concerned with the effect of strain rate on the constitutive response
- the viscous properties of the soil.
We return to the problem analysed in the previous section but now include the
variation of pore pressure. The pore pressure in the interface layer of thickness
hs is u (Fig 7): during any time increment, some of the potential pore pressure
generation δug is dissipated δud through drainage into the underlying soil. The
parabolic isochrone of pore pressure in the underlying soil has pore pressure
magnitude u at the surface (boundary with the slip layer) and extends to a depth
ℓ. The problem is evidently a little more complicated than the analysis of a typical
load increment in an oedometer because we are concerned with events happening
during a certain time increment δt in the history of the process of shearing.
There are three unknowns: δεv the compression of the slip layer; δu the eventual
change in pore pressure in the slip layer; and ℓ the depth to which the parabolic
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iscohrone extends into the soil. We have to ensure compatibility between three
governing physical mechanisms: the mechanical response of the sheared soil; the
flow of water across the boundary; and the expansion of the underlying soil to
maintain the overall constant volume condition. The last two are the product of
the parabolic isochrone; the first is the product of the constitutive model for the
shearing soil.

1. Parabolic (or higher order) isochrones?

The choice of a parabolic shape for the isochrone is arbitrary: we could choose
a more general power law relationship for the shape of the isochrone, and then
generalise the expressions that have been obtained for the analysis of the build-
up of pore pressure in the interface. For a power law with exponent n, the area
under the convex face of the curve as a proportion of the area of the enclosing
rectangle, representing the change in effective stress is 1/n+ 1:∫ 1

0

xndx =
1

n+ 1
(8)

and the slope of the tangent at x = 1 as a proportion of the diagonal of the
enclosing rectangle, representing the flow rate across the boundary, is 1/n:

d (xn)

dx

∣∣∣∣
x=1

= n (9)

We might choose to replace the parabolic isochrones with higher exponent curves
- thus recognising that the tail of penetration of the consolidation front into the
underlying soil under the steadily increasing load might be longer than for an
instantly applied load (Fig 8). The factor 3/2 becomes (n + 1)/n. However, it

7
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turns out that, while the shape of the isochrone will affect the depth ℓ to which
it reaches: ℓ ∝

√
[n(n+ 1)] the value of u is less influenced.

2. Rate-dependent constitutive model

A rather basic soil model is proposed with a few clear elements which can be
readily modified in order to change the response. This is an extension of the
shearing model described in (3). Incrementally:

δµ̃ =
1

(1 + γ̃)2
δγ̃ = (1− µ̃)2δγ̃ (10)

In the absence of pore pressure the shear strength τf = µfq so that µfq/Go is the
elastic strain required to reach the failure shear stress at constant normal stress
q. Alternatively, when γ̃ = 1, µ̃ = 1/2. The shear stress is τ/µfq = τ̃ = µ̃(1− ũ).
The shear stress is scaled with τf = µfq which is the eventual shear stress reached
when consolidation has removed all pore pressure generated through suppressed
dilation.
The influence of rate of shearing on strength is achieved by making the frictional
strength coefficient µf depend on strain rate γ̇ = v/hs:

µf = µfo

[
1 + ζ log10

γ̇

γ̇r

]
⇒ µ̃f = 1 + ζ log10

˙̃γ
˙̃γr

(11)

If we adopt a typical rule of thumb that the strength increases by 10% for each
log cycle of increase in strain rate, then ζ ∼ 0.1. If we impose a constant strain

8
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rate then µ̃f is defined. Over a time step δt, δγ = γ̇δt and δµ is then determined
from (10). We have added µ̃f = µf/µfo and ˙̃γ = γ̃/t̃ = h2sGoγ̇/µfqcv. In this
final expression. µfq/Go is the elastic strain to reach the failure stress ratio and
cv/h

2
s is a reference consolidation time.

We assume again that the critical state line is locally linear in a compres-
sion plane with normal stress and vertical (volumetric) strain (Fig 9). We are
analysing a partially drained problem so that in any time increment there is
some attempt at pore pressure generation through shearing together with some
attempt at pore pressure dissipation through consolidation. We require a pore
pressure generation model. The simplest assumption would be to propose that
the undrained effective stress path is always linear from the present effective
stress state to the critical state failure point (Fig 9). The initial stress state
at the start of a time increment is q − u, µ(q − u) and the failure state is
q− u−Eoψ, µf (q− u−Eoψ). This effectively defines a pore pressure parameter
(of the improved type, separating effects of total stress and dilatancy):

a = −δσ
′

δτ
=

Eoψ

µf (q − u− Eoψ)− µ(q − u)
=

Eoψ

(µf − µ)(q − u)− µfEoψ
(12)

or

ã = aµf =
ψ̃

(1− µ̃)(1− ũ)− ψ̃
(13)

The pore pressure generation is independent of the strain rate but is dependent
on the prior volumetric compression of the interface layer which moves the state
of the interface soil closer to the critical state line.
We can link pore pressure generation with increment of stress ratio which is
directly dependent on the increment of shear strain. The combination of pore
pressure generation δug and pore pressure dissipation δud gives us an eventual
change of pore pressure and change in effective stress δu = δug − δud = −δσ′.

9
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For an increment of stress along the partially drained effective stress path, τ =
µσ′ so that

δτ = σ′δµ+ µδσ′ = σ′δµ+ µ(δud − aδτ) ⇒ δτ =
σ′δµ+ µδud

1 + aµ
(14)

Since σ′ = q − u

δug =
a(σ′δµ+ µδud)

1 + aµ
⇒ δũg = ã

(1− ũ)δµ̃+ µ̃δũd
1 + ãµ̃

(15)

with δµ̃ from (10), δγ̃ = ˙̃γδt̃, ũ = u/q, ψ̃ = Eoψ/q.
The change in state parameter ψ arises from the generated change in pore pres-
sure δug; the dissipation merely moves the state parallel to the critical state line
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(Fig 9):

δψ = −δug
Eo

⇒ δψ̃ = −δũg = −(δũ+ δũd) (16)

There are three volumes which must be identical: the volume expelled from the
interface layer; the volume transmitted through flow at the boundary between
the interface layer and the underlying soil; and the volume change of the un-
derlying soil resulting from the increase of pore pressure. All three components
are controlled by the actual changes in pore pressure δu and in the geometry of
the parabolic isochrone describing the penetration of the pore pressure into the
underlying soil.
The compression of the interface layer is:

hsδεv = hsδud/Eo (17)

The flow rate across the boundary must produce a volume change matching the
compression of the interface layer of thickness hs:

hsδεv =
2uk

ℓγw
δt (18)

δũd = 2
ũ

ℓ̃
δt̃ (19)

This must also match the expansion that can be computed from the area above
the isochrone in the underlying soil:

hsδεv =
δ(uℓ)

3Eo

=
uδℓ+ ℓδu

3Eo

⇒ δℓ̃ = 6
δt̃

ℓ̃
− ℓ̃

δũ

ũ
(20)

In sequence of operation: δt̃→ δγ̃ → δµ̃ (10); δt̃→ δũd (19); δµ̃ and δũd → δũg
(15); δũ→ δℓ̃ (20);δũg → δψ̃ (16).
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dũ

dt̃
=
ãℓ̃(1− ũ)(1− µ̃)2 ˙̃γ − 2ũ

ℓ̃(1 + ãµ̃)
(21)

and
dψ̃

dt̃
= −dũg

dt̃
= ã

(1− ũ)(1− µ̃)2 ˙̃γ + 2µ̃(ũ/ℓ̃)

1 + ãµ̃
(22)

dℓ̃

dt̃
=

6

ℓ̃
− ãℓ̃

ũ

(1− ũ)(1− µ̃)2 ˙̃γ

1 + ãµ̃
+

2

1 + ãµ̃
(23)

Then finally the shear stress that is mobilised is τ = µ(q−u) or τ̃ = µ̃(1−ũ). The
normalisations for the various variables that have been introduced are: ũ = u/q,
t̃ = cvt/h

2
s, µ̃ = µ/µf , ℓ̃ = ℓ/hs, γ̃ = Goγ/µfq, ˙̃γ = h2sGoγ̇/µfqcv, ψ̃ = Eoψ/q,

τ̃ = τ/µfq.
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The governing equations have been solved using a Runge-Kutta 4th order solu-
tion procedure, with a time step δt̃ = 0.001.

Results and discussion

One set of parametric studies has varied the constant strain rate ˙̃γ with constant
initial state parameter ψ̃i = 0.4. It is instructive to plot the paths followed in
the compression plane (1− ũ), (ũ+ ψ̃). As the strain rate increases so the initial
response becomes more significantly undrained and the pore pressure builds up.
However, the pore pressure eventually dissipates entirely bringing the state of the
soil in the slip layer down the critical state line in the compression plane (up the
critical state line in the stress plane) so that the eventual strength is inevitably
τ̃ = 1 or τ = µfq. Because τ̃ is scaled with µf and since the strain rate affects
only µf the eventual value of τ̃ is independent of strain rate. The pore pressure
varies with time as shown in Fig 11 - the maximum pore pressure is dependent
on the strain rate. The variation of shear stress - shown as both τ̃ and µ̃f τ̃ -
with shear strain is shown in Fig 12 and with time in Fig 13: this latter figure is
equivalent to Fig 5 but with allowance made for the variation of pore pressure.
The variation of τ̃ with γ̃ with the strain plotted on a linear axis is shown in Fig
14: this figure is equivalent to Fig 6. The variation of state variable ψ̃ with time
is shown in Fig 15. The variation of ℓ̃ with time is shown in Fig 16. Evidently the
distance of penetration of the consolidation front into the soil beneath the slip
layer becomes very large as the pore pressure falls towards zero but the product
ũℓ̃ has to be able to provide the necessary effective stress and volume changes.
The analysis has been presented in its barest form with the separate contribu-
tions to pore pressure generation and dissipation clearly identified. The dissipa-
tion is entirely controlled by the parabolic isochrone of pore pressure variation
within the soil beneath the slip layer. The generation is controlled by the pore
pressure parameter ã. Pore pressure generation is seen as a reaction of a soil
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which wants to change in volume while being constrained to maintain a constant
volume either by an external prevention of drainage (closure of a tap on a triaxial
apparatus) or by an inability of the permeability to permit the fluid flow and vol-
ume change which would be required to keep up with the rate of shearing of the
soil. As the state of the soil approaches the critical state the desire to change in
volume disappears and the mechanism of pore pressure dissipation will triumph
over the now completed mechanism of pore pressure generation. The critical state
provides a limit on the magnitude of pore pressure that can be generated so that
the simple linear effective stress path that is used to compute the pore pressure
parameter at each step (Fig 9) may not provide a bad representation of the pore
pressure generation.
Rate of straining has been permitted only to change the maximum stress ratio
µf . An increase in strain rate could lead to a raising of the critical state line in the
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compression plane, with shearing continuing at a lower density, higher void ratio.
This is equivalent to reducing the initial value of state variable ψ̃i with strain
rate with the evident consequence that the pore pressure cannot rise so much
and that the shear stress at any particular time will be consequently higher -
there will therefore be two reinforcing effects on the shear stress that is generated
although the eventual strength once pore pressure dissipation is complete should
not change. Typical results are shown in Figs 17 and 18 assuming that ˙̃γ = 0.1,
1, 10, 100, 1000; that ψ̃i = 0.99, 0.79, 0.59, 0.39, 0.19 correspondingly and that
ζ = 0.1, as previously. The pore pressures are shown in Fig 17 and the shear
stresses in Fig 18.
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