CHARACTERIZING DEBRIS FLOWS FOR DESIGN OF HAZARD MITIGATION

Oldrich Hungr Geological Engineering, UBC (ohungr@eos.ubc.ca)

DEBRIS

DEBRIS FLOW IS A PART OF A CONTINUUM (Stiny, 1910)

".. at a certain limit it has changed into a viscous mass consisting of water, soil, sand, gravel, rocks and wood mixed together, which flows like a lava into the valley".

- Flood in a mountain torrent
- Debris flood
- Debris flow

Definitions:

Debris flow

is a very rapid to extremely rapid flow of saturated nonplastic debris in a steep channel. (Hungr et al., 2014)

Indicators of debris flow activity on a fan BOULDER TRAINS, ABANDONED CHANNELS LEVEE LARGE CLAST

Melton Ratio: (watershed relief divided by the square root of watershed area (Wilford et al., 2004)

DEBRIS FLOOD

DEBRIS FLOW

Kamikamihori Valley, courtesy Dr. H.Suwa

What is the most important difference? Concentration of solids?

DEBRIS FLOOD

What is the most important difference? Peak discharge (relative to flood) !

DEBRIS FLOOD, $Q_p = ~2$ to 3 Q_f

DEBRIS FLOW "EVENT"

Surge formation:

Reduce the moment equilibrium equation using the theory of uniformly-progressive flow (Hungr, 2000)

At steady state

(Constant velocity, acceleration=0):

S=slope; S_f=friction slope

Conclusion: Surge building magnifies the peak discharge ("moving dam" effect) depending on the boulder content of the surge

Another factor: Turbulence

Reynolds number depends on depth >> viscous flows develop turbulent fronts (Davies, 1986). Discharge magnification.

Capricorn Ck, British Columbia

Photo: K. Scott, USGS

How to estimate peak discharge? Empirical correlation with event magnitude

Rickenmann (1999)

Event Magnitude

How to estimate Magnitude? Yield rate ("Y") concept

 $V = \sum L_i Y_i$

Volume of an event depends on the length and condition of the contributing channel (e.g. Hungr et al., 1984)

Erosion/deposition boundary

Point of deposition (BC Coast): 10° to 14° - Unconfined channels) 8° to 12° (Confined channels)

Debris Yield Rates, British Columbia (Hungr et al., 1984)

Channel type	Gradient (deg)	Bed material	Side slopes	Stability condition*	Channel debris yield rate [†] (m ³ /m)
A	20-35	Bedrock	Nonerodible	Stable, practically bare of soil cover	0-5
В	10-20	Thin debris or loose soil over bedrock	Nonerodible (bedrock)	Stąble	5-10
С	10-20	Deep talus or moraine	Less than 5 m high	Stable	10-15
D	10-20	Deep talus or moraine	Talus, over 5 m high	Side slopes at repose	15-30
Ε	10-20	Deep talus or moraine	Talus, over 20 m high	Side slopes potentially unstable (landslide area)	Up to 200 (consider as point source)

*Prior to the expected debris torrent event.

[†]For drainage areas of 1-3 km². For other drainage areas use [2].

Factors controlling yield rate: 1)Geology (material) of bed and banks 2)Slope angle 3)Confinement, stability of banks

(for detailed discussion see Hungr et al., 2005)

Example:

Charles Creek British Columbia

Charles Creek Drainage

Drainage area (A)	1.8 km ²		
Main branch length	2550 m		
Total length (both tributaries)	3526 m		
Slope angle above fan (avg.)	27°		
Drainage vertical relief (H)	1325 m		
Subaerial fan area	0.045 km ²		
Fan slope angle (avg.)	16°		
Estimated 200 year flood	32 m ³ /sec		

Initiation zone

(rock falls)

Charles Creek debris

Charles Ck - Debris Flows – Dec 1981

Charles Ck - Debris Flows – Nov 1983

5 m³/m

8 m³/m

Channel types:

- Supply-controlled
- Transport-controlled

Inventory of erodible debris?

10 m³/m

Yield

Rate

Lound	a maximum o					
Sector	Elevation	Length	Description	Y	Volume	Comment
	range	(m)		(m³/m)	(m [°])	
Main Branch						
1	120-190	100	Large boulders	10	1000	Ground
2	190-220	70	Debris	20	1400	Ground
3	220-260	65	Bedrock	5	325	Ground
4	260-360	215	Debris and rock	8	1720	Ground
5	360-400	165	Debris	15	2475	End ground
						traverse
6	400-450	230	Bedrock gorge	5	1150	Air
7	450-850	800	Talus deposits	20	16000	Air
8	850-1220	500	Bedrock	5	2500	Air
			Sub-Total		26570	m ³
Second Branch						
1	450-900	1000	Bedrock	5	5000	Air
Point sources total					10000	Subjective
			Total		41570	m ³

Estimated maximum debris flow magnitude

Maximum event volume (m³)

Debris flow inventory

Date	Debris Volume (m ³)		
Sep. 1969	20,000 to 25,000		
Nov. 1972	5,000 to 10,000		
Dec. 1981	10,000 to 15,000		
Feb. 1983	3000 to 12,000		
Nov. 1983	15,000 to 20,000		
Spring 1990	2500		
Jan. 1991	4000		
Fall 1991	2500		
Winter 1993/1994	1,000 to 3,000		
Winter 1995/1996	1,000 to 3,000		
Jan. 1998	6,000		
Winter 1999/2000	1,000 to 3,000		
Mar. 2005	1000 to 3000		
Nov. 2006	20,000 to 25,000		
Dec. 2007	10,000 to 15,000		
Jan. 2008	1,000 to 2,000		

Cumulative Magnitude-Frequency (CMF) curve

Dynamic modelling: The Perfect Debris Flow (Iverson, 2010)

"Voellmy reology": Resisting stress = frictional and turbulent term

$$T = f\sigma + \gamma \frac{V^2}{\xi}$$

- V = mean velocity
- σ = normal stress
- Υ = unit weight
- **F** = friction coefficient

"Perfect debris flow: by trial and error, f=0.06, ξ=600m/s²

P. Fitze, 2011

Protective measures:

Barriers and Basins

Charles Creek Barrier

Charles Ck Barrier, "Storage Angle"

Design - 8° (half of original creek slope at basin)

Charles Ck – Storage Angles - Nov 2006

Charles Creek 2006 flow analysis

DAN 3D Voellmy f=0.1, ksi=500 m/s²

DAN analysis of basin filling

Т

Voellmy, f=0.1, ksi=500 m/s²

A "shooting channel", Savoy Alps. The bridge can be lifted at the time of danger

A lined channel designed for passage of debris flows on Alberta Creek, Lions' Bay, British Columbia Landslide Induced Debris Flows of August 2005 (Brienz) (Prof. S.Loew, ETH Zurich)

Another phenomenon: Debris Avalanche

Johnson's Landing, Kootenay Lake, 2004 image

Another phenomenon: Debris Avalanche

Johnson's Landing, Kootenay Lake, 2004 image

Johnson's Landing, British Columbia May, 2012

Pre-event geomorphological mapping:

Source area is situated in a geomorphological unit described as sandy moraine and glaciofluvial soil (kame deposit) - Failing (i.e. in an unstable condition). Stability Class III (out of 5)

IV

Deep-seated compound silt slide 320,000 m³

1:500 year rain on snowmelt

Source volume: 320,000 m³

Minor soil entrainment, large quantities of timber debris

Flow velocity from eyewitness accounts: > 20 m/s

Channel overflow site (Photo, Peter Jordan, BCF, Nelson)

Channel overflow site (Photo, Peter Jordan, BCF, Nelson)

Deposit:

6 houses destroyed, 4 fatalities

This is the first landslide deposit on top of a glaciofluvial terrace surface, over 9,000 years old!

Photo: Peter Jordan

Recommendations:

- Concentrate on site observations
- Carefully evaluate evidence on the fan
- Examine the initiation area
- Do not underestimate signs of instability
- Examine path
- Assess potential for entrainment
- Analysis: use a calibrated model
- Consider random factors (channel blockage?)
- Estimate the performance of protective measures under all possible scenarios

REFERENCES

Davies, T.R.H. 1986. Large debris flows: a macroviscous phenomena. Acta Mechanica, 63: 161-178.

Fitze, P., M.Sc. Thesis, Rapperswill Polytecnic, Switzerland and UBC, Canada.

Hungr, O. 2000. Analysis of debris flow surges using the theory of uniformly progressive flow. Earth Surface Processes and Landforms, 25: 1-13.

Hungr, O., Morgan, G.C. and Kellerhals, R. 1984. Quantitative analysis of debris torrent hazards for design of remedial measures. Canadian Geotechnical Journal, 21: 663-677.

- Hungr, O., Evans, S.G., Bovis, M., and Hutchinson, J.N. 2001. Review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, VII:221-238.
- Hungr, O., McDougall, S., Bovis, M., 2005a. Entrainment of Material by Debris Flows. Chapter 7 in Jakob, M., Hungr, O., Eds., Debris Flow Hazards and Related Phenomena. Springer, in association with Praxis Publishing Ltd.
- Hübl, J., Suda, J., Proske, D., Kaitna, R. and Scheidl, C., 2009. Debris Flow Impact Estimation. Proceedings, International Symposium on Water Management and Hydraulic Engineering, Ohrid/Macedonia, Paper: A5.
- Iverson, R., Logan, M., LaHusen, R., & Berti, M. (2010). *The perfect debris flow? Aggregated results from 28 large-scale experiments.* Journal of Geophysical Research, Vol. 115, F03005.
- Jakob, M., Stein, D. and Ulmi, M., 2011. Vulnerability of buildings to debris flow impact. Natural Hazards, Vol. 60, No. 2, pp. 241-261.
- Marinelli, G., Aaron, J., Borgatti, L., Hungr, O. and Jordan, P., 2014b. Back-analysis of Johnsons Landing 2012 landslide using two dynamic analysis models. In: Proceedings, Engineering Geology for Society and Territory, IAEG XII Congress, Torino, September, 2014.Rickenmann, D., 1999. Empirical relationships for debris flows. Natural Hazards, 19:47-77.
- Stiny, J., 1910. Die Muren. Verlag der Wagner'shen Universitätsbuchhandlung, Innsbruck. (Debris flows, English translation by M. Jakob and N. Skermer, 1997, EBA Engineering Consultants, Vancouver, Canada, 106 p.)
- Wilford, D. J., Sakals, M. E., Innes, J. L., Sidle, R. C. and Bergerud, W. A., 2004. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides , 61–66.

THANK YOU

Expect the unexpected!

