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TOPICS FOR TODAY

1. Why site response

2. Recorded earthquake ground motion data

3. Comparison with empirical earthquake ground motion 
models (GMMs) & need for analytical approaches

4. Historical perspective

5. Currently available analytical procedures

6. Concluding Remarks/Recommendations

TOPIC 1

WHY SITE RESPONSE
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The New East Span of the San Francisco Oakland Bay Bridge

Nuclear Plant in California
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Portion of Downtown San Francisco 

A A

D half-space

Soils

A

Idealized soil profile to represent free field conditions

"D" corresponds to the earthquake ground motion needed
as the "within" rock motion to use in a dynamic response
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C
rock half-space

Idealized outcrop

"C" corresponds to earthquake ground motion recorded
on a rock outcrop

A A

D half-space

Soils

A

Idealized soil profile to represent free field conditions

"D" corresponds to the earthquake ground motion needed
as the "within" rock motion to use in a dynamic response
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A A

D
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Structure

B
Free field Free field

Idealized soil-foundation-structure (SFS) system

half-space

Foundation Soils

Embankment Dam
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Free field Free field
Embankment Soils

Foundation Soils Foundation Soils

rock half-Space

Finite difference mesh courtesy of Dr. Michael Beaty

Why Site Response

A ground response analysis provides a means to check the 
results in the free field of dynamic analyses that incorporate 
SSI or SFSI … etc. 

Therefore, it is important to have in our "Computation–Tool 
Bucket" procedures and computer programs that we can rely 
on to provide us with reasonably reliable estimates that 
correlate well with measured values and are physically 
meaningful.
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TOPIC 2

RECORDED EARTHQUAKE GROUND MOTION DATA

Recorded Earthquake Ground Motion Data

The New Generation Attenuation (NGA) Project was initiated in 2004 
and resulted in accumulating, checking, organizing and disseminating 
tens of thousands of motions recorded during earthquakes as follows: 

 Shallow crustal earthquakes in active tectonic regions (such as 
California); designated NGA West2.

 Shallow crustal earthquakes in stable continental tectonic 
regions (such as Central and East North America); designated 
NGA East.

 Subduction zone earthquakes; designated NGA Subduction.
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RECORDED EARTHQUAKE GROUND MOTION DATA

NGA West2

 Total Number of Recordings 21,540

 Usable FF Number of Recordings 19,572

Range of Data: M    = 3 to 7.9

Rrup = 0.1 to 1,500 km

VS30 = 89 to 2,100 m/sec

Rock Sites  VS30 ≥ 600 m/sec

Soft soil sites VS30 ≤ 210 m/sec
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NS -- Mech = 1 & 4 (1311)

Magnitude – Rrup plot of
Recordings obtained during 

crustal earthquakes
Rrup ≤ 500 km; M ≥ 3
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RECORDED EARTHQUAKE GROUND MOTION DATA

NGA East

 Total Number of Recordings 9,382

 Usable FF Number of Recordings 8,918; 59 events

Range of Data: M    = 3.1 to 5.85

Rrup = 4.2 to 3,510 km

VS30 = 144 to 2,000 m/sec

Plus one recording – M = 6.8 at 5.5 km; VS30 = 300 m/sec

& three recordings – M 6.76 at 4.9 to 9.6 km; VS30 = 1700 m/sec

Rrup (km)
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Mechanism 3 (434)
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Mechanism 1 (451)
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Magnitude – Rrup plot of
Recordings obtained during 

earthquakes in CENA*
Rrup ≤ 3000 km; M ≥ 3

* Central and East North America
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RECORDED EARTHQUAKE GROUND MOTION DATA

NGA Subduction

 Total Number of Recordings: 71,343

 Usable FF Number of Recordings: 49,259; 736 events

Range of Data:

Interface: M    = 4 to 9.1

Rrup = 8 to 6,500 km

VS30 = 53 to 2,230 m/sec

Intraslab: M    = 3.3 to 8.4

Rrup = 17 to 5,400 km

VS30 = 88 to 2,100 m/sec

Magnitude – Rrup plot of
Recordings obtained during 

subduction earthquakes
Rrup ≤ 1500 km; M ≥ 5
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WHAT WE CAN GLEAN FROM
RECORDED EARTHQUAKE GROUND MOTION DATA

LEARNING FROM RECORDED DATA

Will examine spectra, in terms of spectral shapes

Spectral shape is the ratio of the spectral acceleration, PSA, at 
period, T, divided by the spectral acceleration at T = 0.01 sec, 
which typically corresponds to the maximum acceleration of the 
record, i.e., PGA.

Key metrics to examine are:

• Plot of PSA/PGA versus T
• The maximum ratio PSA/PGA
• The period, T@max at which this maximum occurs
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Plot of spectral acceleration versus period 
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EXAMINATION OF THE PERIOD, T@max, AT WHICH THE MAXIMUM
RATIO OF PSA/PGA OCCURS

Rock sites – Plot of T at max ratio of PSA/PGA versus M

Magnitude, M

4 5 6 7 8

P
er

io
d

, 
T

 (
se

c)
, 

at
 m

ax
 r

at
io

 o
f 

P
S

A
/P

G
A

0.1

1

NGA West2 Flatfile
Free Field Recordings at sites
with VS30 = 600 to 2100 m/sec

Magnitude = 4 to 7.9
Rrup = 1 to 500 km
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Rock sites – Plot of T at max ratio of PSA/PGA versus Rrup
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NGA West2 Flatfile
Free Field Recordings at sites
with VS30 = 600 to 2100 m/sec

Magnitude = 4 to 7.9
Rrup = 1 to 500 km

Soft Soil sites – Plot of T at max ratio of PSA/PGA versus M
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Soft Soil sites – Plot of T at max ratio of PSA/PGA versus Rrup
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NGA West2 Flatfile
Free Field Recordings at sites
with VS30 = 89 to 212 m/sec

Magnitude, M = 4 to 7.9
Rrup =  1 to 500 km

LEARNING FROM RECORDED DATA

Conclusions regrading the period, T@max, at which the max ratio of 
PSA/PGA occurs can be summarized as follows: 

1. Rock Sites [VS30 ≥ 600 m/sec]

• T@max is essentially independent of magnitude, M, and VS30.

• T@max increases with Rrup.

2. Soft Soil Sites [VS30 ≤ 212 m/sec]

• T@max is essentially independent VS30.

• T@max increases with of magnitude, M, and Rrup.
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EXAMINATION OF THE MAXIMUM RATIO OF PSA/PGA

Spectral Shape
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Magnitude, M
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NGA West2 -- Rock Sites
Free Field Recordings at sites
with VS30 = 89 to 212 m/sec
Magnitude, M = 4 to 7.9
Rrup =  1 to 500 km

NGA West2 -- Soft Soil Sites
Free Field Recordings at sites
with VS30 = 89 to 212 m/sec
Magnitude, M = 4 to 7.9
Rrup =  1 to 500 km

Rock and Soft Soil sites – Plot of the max ratio of PSA/PGA versus M

2.5

Rock and Soft Soil sites – Plot of the max ratio of PSA/PGA versus VS30
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Rock and Soft Soil sites – Plot of the max ratio of PSA/PGA versus Rrup

Rrup (km)

1 10 100

M
ax

 r
at

io
 o

f 
P

S
A

/P
G

A

0

2

4

6

8
NGA West2 -- Rock Sites
Free Field Recordings at sites
with VS30 = 89 to 212 m/sec
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Free Field Recordings at sites
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2.5

LEARNING FROM RECORDED DATA

Conclusions regarding the max ratio of PSA/PGA can be summarized 
as follows: 

The max ratio of PSA/PGA appears to be essentially independent of 
magnitude, M, or VS30.  There is an apparent hint that this metric may 
increase with Rrup.  

The range of this ratio is from 2 to about 6.  This ratio exceeds 2.5 for 
about 97% of the recordings.  

These conclusions apply at rock as well as at soft soil sites.
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TOPIC 3

EMPIRICAL EARTHQUAKE GROUND MOTION MODELS

EMPIRICAL EARTHQUAKE GROUND MOTION MODELS

Conclusions regarding the use of empirical earthquake ground 
motion models (GMMs) can be summarized as follows: 

• The spectral shapes obtained for a rock site [VS30 = 760 m/sec] 
using the NGA West2 GMM are generally consistent with the 
recorded data.

• However, those obtained for a soft soil site are not as well 
constrained. 
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EMPIRICAL EARTHQUAKE GROUND MOTION MODELS

Differing results were obtained for the soft soil site [VS30 = 180 m/sec] 
using the other three NGA West2 GMMs.  The conclusion stated above, 
however, applied to each.

Accordingly, it is appropriate to use the empirically-derived earthquake 
ground motion models (GMMs) to estimate spectral values at a rock 
site, which becomes the "rock outcrop" for a specific application.  

Such spectra can then be used to represent the target spectrum at a 
rock outcrop in a seismic analysis. 

TOPIC 4

HISTORICAL PERSPECTIVE
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The 1906 San Francisco Earthquake 

The performance of various sites during the 1906 San Francisco 
earthquake highlighted the importance of site response during 
earthquakes and, as noted by Lawson (1908), emphasized the 
effects of local site conditions.  

Although some attempts were made to explain these effects using 
wave propagation theories, it was not possible, at that time, to go 
beyond qualitative explanations. 

In 1952 – 1956 Professor Kanai proposed the use of the continuous 
solution to the wave equation to study site effects on earthquake 
ground motions.

Professor C. Martin Duke brought Kanai's work to attention of
US researchers & practitioners in 1958.

This was met with strong resistance from structural engineers in 
the USA.

Professor Kanai's Contributions
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The late Professor Seed presented a paper at the WCEE advancing 
the concerns with the behavior of soils during earthquakes and the 
potential effects of local site conditions on earthquake ground 
motions -- 1960.

Donald Hudson (Caltech) proposed the use of values of damping 
that are dependent on the level of deformation in structural 
elements – 1963.

Penzien, Parmelee & Seed developed a bilinear procedure & wrote 
a computer program to calculate the response of soft soil sites –
1963.

Activities in the 1960s

G. R. Martin suggested the need to incorporate the influence of the 
level of shaking in calculating response of earth dams – 1965.

Idriss examined the laboratory test results by Thiers & Seed and 
suggested the use of strain-compatible modulus & damping values in 
site response calculations – 1966

Idriss & Seed used the bilinear solution to show that strain-compatible 
modulus & damping values can be used in a linear program to produce 
comparable results; i.e. Equivalent Linear Solution -- 1968

Activities in the 1960s (Cont'd)
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Researchers at the University of Michigan (under the leadership of 
Professor Richart) carried out a comprehensive testing program to 
measure modulus & damping values.  They showed dependence of 
these values on amplitude of vibration – this work was initiated 
beginning in the early 1960s.

The late Professor Seed and I began to compile the dynamic 
laboratory tests on sands, which included free vibration and 
resonant column tests.  This effort began in 1968 and culminated in 
the preparation of the Report summarizing these results and 
introducing the concept of using G/Gmax.  This Report was published 
by EERC in 1970. 

Activities in the 1960s

From Seed and Idriss (1970)
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Examples of G/Gmax Curves

published over the years

Field

Lab Curve
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Estimating the Field G – log  Relationship (Soil)

EQ

Link Between Field and Lab:

G , field =  (G/Gmax )  x Gmax, field

La Cienega
Depth = 185 m
Silty Sand (SM)
O = 25 atm

Courtesy of Professor K. Stokoe
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Analyses of shaking table tests on earth slopes suggested the need 
to have the ability to use different damping values in various parts 
of the slope & to the development of a variable damping FE 
program – 1969, which was later named QUAD4.

Schnabel started his research using the FE program developed in 
1969 and initiating comparisons using a continuous solution to 
check accuracy – 1970.

Both approaches (the time-domain FE and the frequency-domain 
continuous formulations) introduce high damping.  When Schnabel 
and I discussed this issue with Professor Lysmer, who had up to 
that time concentrated on working on foundation vibration issues, 
he suggested a novel approach to overcome this issue.

Activities in late 1960s and early 1970s

Professor Lysmer suggested that the viscosity coefficient in the 
complex modulus expression be replaced by the damping ratio; thus 
making the damping ratio frequency-independent – 1971.

These developments & using Cooley & Tukey fast Fourier transform 
made it possible to have an efficient continuous solution that can be 
programmed to provide for incorporating strain-compatible modulus & 
damping values – 1972

Thus, the birth of the Computer Program SHAKE.

Professor Lysmer "converted" to geotechnical earthquake engineering 
and introduced the Computer Programs LUSH, FLUSH culminating in 
the Program SASSI, which has been widely used in evaluating SSI for 
nuclear plant structures since its introduction some 40 years ago. 

Activities in the1970
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TOPIC 5

SITE RESPONSE ANALYSES

A large number of recordings were obtained at many sites during the 
1989 Loma Prieta earthquake (M = 6.9).  Many of these sites were in the 
San Francisco Bay Area, including the site at Treasure Island.

Calculation of the response of the Treasure Island site will be covered 
as follows:

1. Loma Prieta – equiv. linear analyses (EQL)
2. Downhole Array -- Comparison with other programs (EQL)
3. Loma Prieta – Comparison with other programs (EQL & NL)

Site Response Calculations
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TREASURE ISLAND SITE

1. Loma Prieta – equiv. linear analyses (EQL)
2. Loma Prieta – Comparison with other programs (EQL & NL)
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TREASURE ISLAND SITE

1. Loma Prieta – equiv. linear analyses (EQL)
2. Loma Prieta – Comparison with other programs (EQL & NL)

Loma Prieta – Comparison with DeepSoil (EQL)
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Loma Prieta – Comparison with DeepSoil & SHAKE (EQL)
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Subsurface layers at the 

Treasure Island site
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Loma Prieta – Comparison with FLAC using PM4Silt for YBM
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Spectral Shapes – FLAC Analyses and DeepSoil NL
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Spectral Shapes – Recorded Motion and NL & EQL Analyses
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FLAC Analyses – Excess PWP Induced during Shaking

The use of PM4Sand for the sand layers and PM4Silt for the Young 
Bay Mud layers provides the means to calculate the excess pore 
water pressure (PWP) induced in these layers during shaking, as 
illustrated at a depth of 10.5 m within the upper sand layer and a 
depth of 20.5 m within the YBM layer.

Treasure Island Site

FLAC Analysis -- depths at which PWP

generation/dissipation are shown in next figures 
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FLAC Analyses – Excess PWP Induced during Shaking
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The equivalent linear procedure has been & continues to be widely 
used procedure in practice for calculating site response & for
developing site specific earthquake ground motions and design 
parameters.  

It has also been widely used for evaluating existing and new earth 
structures and for assessing SSI aspects.

CONCLUDING REMARKS

Advances in nonlinear analyses are encouraging and the results 
presented today highlight the values of using such analyses.

Care must be exercised in selecting appropriate constitutive models for 
the various soil layers comprising the profile under considerations.

Calibration of the selected constitutive model with relevant test data 
and empirical correlations is essential.  Professor Hashash and his 
collaborators have done that for the model built into DeepSoil.  
Professors Boulanger and Ziotopoulou and their collaborators have 
done that extensively for PM4Sand and are continually adding to that 
effort for PM4Silt.

The results for the Treasure Island site, using PM4Silt for the Young 
Bay Mud layer, highlight the importance of accounting for pwp 
generation and cyclic softening during shaking.

CONCLUDING REMARKS
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The key factors that affect a site response calculation are:

1. The input motion can have a profound influence on calculated 
site response, as evidenced from the results shown earlier for 
the Treasure Island site.

2. The soil profile also will influence the calculated site response.

3. The soil properties also influence the calculated site response, 
but to a lesser degree than input motion or soil profile.

4. The method of analysis will influence the results, depending on 
the level of shaking and the selection of parameters.  For the 
Treasure Island site, the effect was minimal for the level of 
shaking experienced in the Loma Prieta earthquake.

CONCLUDING REMARKS

1. PLEASE limit the use of the equivalent linear procedure to those 
in which the calculated effective strain is less than about 0.6%, 
which corresponds to a maximum strain < 1%.

2. For a "deconvolution" analysis, I have found it useful to get the 
strain-compatible properties by completing the analysis with a 
low cuff-off frequency (say 5± Hz, depending on the level of 
shaking), then using the resulting strain-compatible modulus and 
damping values for one iteration and the desired cuff-off 
frequency (typically 20 to 30± Hz).

A FEW RECOMMENDATIONS
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3. Allow for variations in shear wave velocities and in modulus 
reduction and damping curve within physically meaningful ranges.

4. When using a randomizing process to allow for variations in these 
properties, be sure to check that any realization is physically 
meaningful.

5. Casagrande, in his Terzaghi Lecture (No. 2), emphasized the need 
to select a "probable range of pertinent soil properties guided by 
judgement and experience".  This is a valuable and timeless advice.  
We should all heed it.

A FEW RECOMMENDATIONS

PARTING THOUGHTS

Confucius said
"Life is really simple, but we insist on making 

it complicated"

Einstein said
"Everything should be made as simple as 

possible, but no simpler"
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