2017-2018 Executive Committee: Chair - Shane I

Vancouver Geotechnical Society

A Local Section of the Canadian Geotechnical Society

www.v-g-s.ca

Past-Chair Program Director Treasurer Secretary Registrar Web Manager CGS Director Member-at-Large Member-at-Large Member-at-Large Member-at-Large Member-at-Large

- Shane Magnusson, BGC 604-684-5900 - Chris Longley, Stantec 604-340-5123 - Aran Thurairajah, Golder 604-296-4200 - Yoshi Tanaka, exp Services 604-422-2156 - Ali Ghandeharioon, KCB 604-669-3800 - Tim Morton, GHD 604-248-3925 - Marc Bossé, Thurber 604-684-4384 - Andrea Lougheed, BGC 604-684-5900 - Mustapha Zergoun, Thurber 604-684-4384 - Ryan Mills, Tetra Tech 604-685-0275 - Kumar Sriskandakumar, BGC 604-684-5900 - Ali Amini, NAGL 778-384-3606 - Intisar Ahmed, UBC/Stantec 604-436-3014 - Olga Kosarewicz, BCIT 604-432-8580 - Carlie Tollifson, Stantec 604-340-5123

NOTICE OF UPCOMING TECHNICAL PRESENTATION Tuesday, November 14, 2017

TOPIC: Probability Approach for Ground and Structure Response to GSC 2015 Seismic Hazard including Crustal and Subduction Earthquake Sources

SPEAKER: Guoxi Wu, Ph.D. P.Eng., Specialist Engineer, BC Hydro

Dr. Wu is a registered geotechnical engineer with Master's (1992) and Doctorate degree (1994) from the Civil Engineering Department of the University of British Columbia where he contributed to the seismic induced liquefaction-deformation and remediation study of the Sardis Dam in Mississippi and researched dynamic soil-structure interaction of pile foundations and retaining structures. He has since made over 50 publications in geotechnical earthquake engineering including a recent article of "Seismic Design of Dams" on the Encyclopedia of Earthquake Engineering. Prior to joining BC Hydro Engineering in 2007, his consulting experience included works with AGRA Earth and Environmental in Burnaby (now AMEC Foster Wheeler), Klohn-Crippen Consultants Ltd. in Richmond (now Klohn Crippen Berger), EBA Engineering in Vancouver (now Tetra Tech EBA), and Golder Associates Ltd. in Burnaby.

CONTENT: The fourth generation seismic hazard maps of Canada developed by Geological Survey of Canada (GSC) included hazard values for a probability of 2%/50 years that were adopted in the seismic provisions in the 2005 and 2010 National Building Code of Canada (NBCC). However, these hazard values were derived from only the crustal earthquake sources (magnitude in the order of 7), while seismic hazards from the Cascadia subduction earthquake source (magnitude in the order of 9) were evaluated separately using a deterministic approach for hazard assessment based on the distances to the site. The hybrid method mixing probabilistic and deterministic approaches makes it impossible to design a certain structure to withstand seismic risk at a given overall probability level including all earthquake sources.

The 2015 GSC fifth generation seismic hazard model addressed the above issue by providing seismic hazard maps (e.g., 2%/50 years) with seismic hazards from all earthquake sources including the contribution from the Cascadia subduction earthquake. However, the total Uniform Seismic Hazard (USH) Spectra possesses challenges to civil engineers in how to apply the USH spectra in engineering design as the two earthquake sources have dramatically different magnitudes (M7 for crustal and M9 for subduction interface) and thus they would result in ground and structural response (such as ground displacement, soil liquefaction potential, or bending moment in building columns) in an order of magnitude difference. Using the same USH spectra for crustal and subduction sources will simply not work for engineering performance assessment or in design of new buildings.

This presentation will provide an overview on how to make use of crustal, in-slab, and interface subduction hazard values from the 2015 GSC Model for the 13148 grid points (10 km by 10 km) in southwestern Canada (southern BC and western Alberta). USH spectra for crustal/in-slab earthquakes and USH spectra for Cascadia subduction interface earthquake can be derived at a couple of probability levels. Structure performance assessment can then be determined separately for the two main earthquake sources at a couple of probability levels. The overall probability at a

2017-2018 Executive Committee: Cha

Vancouver **Geotechnical Society**

A Local Section of the Canadian Geotechnical Society

www.v-g-s.ca

2017 2010 Enceutive	commutee.
Chair	- Shane Ma
Past-Chair	 Chris Long

Chair	-	Shane Magnusson, BGC	604-684-5900
Past-Chair	-	Chris Longley, Stantec	604-340-5123
Program Director	-	Aran Thurairajah, Golder	604-296-4200
Treasurer	-	Yoshi Tanaka, exp Services	604-422-2156
Secretary	-	Ali Ghandeharioon, KCB	604-669-3800
Registrar	-	Tim Morton, GHD	604-248-3925
Web Manager	-	Marc Bossé, Thurber	604-684-4384
CGS Director	-	Andrea Lougheed, BGC	604-684-5900
Member-at-Large	-	Mustapha Zergoun, Thurber	604-684-4384
Member-at-Large	-	Ryan Mills, Tetra Tech	604-685-0275
Member-at-Large	-	Kumar Sriskandakumar, BGC	604-684-5900
Member-at-Large	-	Ali Amini, NAGL	778-384-3606
Member-at-Large	-	Intisar Ahmed, UBC/Stantec	604-436-3014
Member-at-Large	-	Olga Kosarewicz, BCIT	604-432-8580
Member-at-Large	-	Carlie Tollifson, Stantec	604-340-5123

given performance level (displacement, liquefaction or others) can then be determined by adding the probabilities from each of the two individual performance hazard curves. The overall performance (displacement, liquefaction or others) at a target probability level (e.g., 2%/50 years) is then determined from the overall combined performance hazard curve. Examples for determining seismic slope displacements from empirical equations (Bray and Travasarou 2007, Macedo et al. 2017) and for assessing site response and liquefaction using nonlinear finite element time history analyses (VERSAT, Wutec 2016) will be shown to illustrate the proposed procedure.

DETAILS: Location: Executive Inn, 4201 Lougheed Highway, Burnaby, BC V5C 3Y6

Social Hour: 5:30 to 6:30 pm (drinks available at the hotel bar)

Technical Presentation: 6:30 to 7:30 pm (No need to RSVP)

Dinner: 8:00 pm (\$20 will be charged for dinner). If you would like to stay for dinner, please RSVP to Tim Morton via email (timothy.morton@ghd.com) or at the door.